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Resonant x-ray second-harmonic generation in atomic gases
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We explore the x-ray second-harmonic generation process induced by resonant two-photon absorption in
systems with inversion symmetry. We show that this process becomes allowed in the x-ray region due to
nondipole contributions. It is found that, although a plane-wave pump field generates only a longitudinal
second-harmonic field, a Gaussian pump beam creates also a radially polarized transverse second-harmonic
field which is stronger than the longitudinal one. Contrary to the longitudinal component, the transverse
second-harmonic field with zero intensity on the axis of the pump beam can run in free space. Our theory is
applied to Ar and Ne atomic vapors and predicts an energy conversion efficiency of x-ray second-harmonic
generation of 3.2 × 10−11 and 1.3 × 10−12, respectively.
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I. INTRODUCTION

Modern x-ray free-electron laser (XFEL) facilities can
deliver high intensities as high as 1015–1019 W/cm2 making
it possible to efficiently populate core-excited states and even
create population inversion and x-ray lasing [1–7]. At these in-
tensities, x-ray matter interaction becomes nonlinear creating
room for studies of nonlinear effects, such as stimulated x-ray
Raman scattering [3–5,8–10], pulse compression [3–5], x-ray
four-wave mixing [3–5,11,12], and nonlinear wave mixing of
x-ray and near-infrared beams [13]. Special attention was paid
to the competition between stimulated x-ray emission and
Auger decay [14–16]. Second-harmonic generation (SHG)
is a nonlinear optical process of sum frequency generation
which produces new photons with twice the frequency. SHG
has traditionally been studied as an even-order nonlinear
optical effect allowed in media without inversion symmetry
[17] and is one of the best-understood nonlinear effects in
optics [18]. In light of the XFEL development, its study in
the Angstrom regime, e.g., on the natural scale of atomic
and molecular structure of matter, has become of great in-
terest both from a fundamental and a practical viewpoint. A
pioneering study by Shwartz et al. [19] and Yudovich and
Shwartz [20] gave recently experimental evidence for “off-
resonant” SHG in diamond in the hard x-ray region with a
pump frequency of 7.3 keV.

*jicailiu@ncepu.edu.cn

In the present paper, we show that, due to the large mo-
mentum of the photon k, the nonlinearity in the x-ray region
is different from conventional nonlinearities in the visible
regime and that SHG is generally possible to observe for cen-
trosymmetric systems even when phase-matching conditions
do not prevail. We present a theoretical study of x-ray SHG
in atomic gases induced by resonant two-photon absorption
(TPA). We show that the plane-wave pump field can create
only longitudinally polarized x-ray SH fields which cannot
propagate in free space (see, however, Ref. [21]), but also
that a Gaussian pump pulse induces in addition transverse
SH fields which contrary to the longitudinal component can
run in free space. Our idea is, in a certain sense, inverse to
the use of the longitudinal component of focused light beams
in laser-driven particle accelerators [22]. Another important
feature of the SHG problem studied here is that the transverse
field, being strictly equal to zero on the beam axis, has an
unusual radial polarization.

Our paper is organized as follows. We outline, in Sec. II A,
the basic theory of SHG using plane-wave pump radiation
which generates only the longitudinal field. Then, in the
following Sec. II B, we show that a Gaussian pump field
creates also the transversely polarized SH field. Section II C
is devoted to the analysis of the longitudinally and radially
polarized SH fields. We shed light on the role of the absorption
of an SH field in Sec. II D. Some theoretical details can be
found in Appendices A–C. We discuss our results further in
Sec. III where we numerically analyze the efficiency of SHG
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FIG. 1. The dipole moment r10 of the 1s → np transition in the
atom is parallel to k. The axis of quantization z is along the photon
momentum k.

in Ne and Ar atomic vapors. Finally, in Sec. IV, we come to
the conclusions.

II. THEORY

Quantum mechanically, the second-order nonlinearity in
the optical susceptibility originates from a perturbational so-
lution of the Schrödinger’s equation. To get insight into the
physics of the SHG process in the x-ray region, we consider
the propagation of a x-ray pump field Ep in an atomic gas far
away from the absorption edge. To induce the SHG we choose
twice the frequency of the pump field to be resonant with the
frequency of a two-photon transition 2ω ≈ ω10. The scheme
of SHG is shown in Fig. 1 where the pump field resonantly
promotes the 1s electron of an atom to the np unoccupied
level. The resonant population of state |1〉 in the course of
TPA is followed by the emission of the SH field E. Let us
start from the atom-field interaction, which reads as [we use
Système International (SI) units],

V = V (1) + V (2) = − e

2mc
(p · Ap + Ap · p) + e2

2mc2
A2

p,

(1)
where m and e are the mass and charge of the electron,
respectively. c is the speed of light, and p is the operator of
electronic momentum. Below, we will use more frequently
the electric field instead of the vector potential E = −∂A/∂t .
The square of the vector potential of the pump field A2

p
describes the TPA process in the first order of perturbation
theory whereas the scalar product p · Ap contributes to the
TPA in second order of perturbation theory.

A. Plane-wave pump field

It is instructive to consider first the interaction with the
simplest and most fundamental electromagnetic wave, the
transverse plane-wave Ap = (Ap/2) exp[−ı(ωt − k · r − k ·
r(e) )] + c.c.,

E p = 1

2
Epe−ı(ωt−k·r−k·r(e) ) + c.c.,

(2)

Ep = eE (0)
p = −∂Ap

∂t
= ıωAp,

with the polarization e being orthogonal to the photon mo-
mentum k. Here, r(e) is the coordinate of the electron with
respect to the atom, and r is the radius vector of the atom in
the laboratory frame. To avoid unnecessary complexity (see
also below) we will focus only on the A2

p term assuming that
the wavelength of the photon is longer than the size of the core
orbital ka < 1,

V (2) = e2

8mc2
A2e−ı2(ωt−k·r(e)−k·r) + c.c. + const

≈ e2

8mc2
A(0)2

p e−ı2(ωt−k·r)(1 + ı2k · r(e) ) + c.c. + const.

(3)

The term A(0)2
p being independent of the electron radius vector

r(e) cannot induce transitions between electronic states. Thus,
the transition between the ground (s) and the core-excited (p)
states is induced solely by the matrix element,

V (2)
10 ≈ −ı

eE (0)2
p

4mc2ω2
(k · d10)e−ı[(2ω−ω10 )t−2k·r], (4)

of the second term k · r(e) on the right-hand side of Eq. (3).
The rotating-wave approximation is used here by keeping only
the near-resonant term. This pure nondipole process opens the
s → p TPA channel with the transition dipole moment d01 =
er01 = e〈0|r(e)|1〉 (Fig. 1). We chose the axis z of quantization
to lie along the photon momentum k. In this frame, the pump
field populates only the npz level (see Fig. 1), and the problem
is reduced to the interaction with a two-level atom with the
transition dipole moment parallel to the photon momentum,

d01 ‖ k. (5)

The resonant TPA population of the core-excited state of
p symmetry is followed by the dipole allowed one-photon
transition p → s which creates the SHG field with the double
frequency 2ω. This explains why the SHG is possible in
systems with inversion symmetry in the x-ray region.

To quantify the studied process, one should compute the
polarization P . The induced macroscopic polarization of the
medium being the expectation value of the dipole moment d
is specified in terms of the density-matrix ρ(t ),

P = N Tr(dρ) = N[d01(t )ρ10(t ) + d10(t )ρ01(t )], (6)

where N is the concentration of atoms and d01(t ) =
d01 exp(ıω10t ) is the dipole moment in the interaction rep-
resentation [22,23]. The off-diagonal element of the density-
matrix ρ10(t ) = �10 exp[−ı(νt − 2k · r)] satisfies the follow-
ing kinetic equation in the interaction picture [23],

(
∂

∂t
+ � − ıν

)
�10 = 1

h̄m

(
eE (0)

p

2ω

)2

(k · r10)(ρ11 − ρ00),

(7)
where ν = 2ω − ω10 is the detuning from the two-photon
resonance and � is the lifetime broadening of core-excited
state |1〉. We neglect the very weak depopulation of the
ground state in the course of the two-photon absorption (ρ00 ≈
1, ρ11 � 1) and assume that the duration τ of the pump pulse
is longer than the lifetime of the core-excited state 1/�. In this
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case, one can use the stationary solution of Eq. (7),

�10 = �∗
01 = − 1

h̄m

(
eE (0)

p

2ω

)2
(k · r10)

� − ıν
(8)

to find the induced macroscopic polarization taking into ac-
count Eq. (5),

P = Pe−ı2(ωt−k·r) + c.c.,

P = k̂p, p = −
(

eE (0)
p

2ω

)2
Nker2

01

mh̄(� − ıν)
. (9)

Here, k̂ = k/k is the unit vector along k. One can see that the
pump radiation creates a macroscopic polarization P oriented
along the direction of propagation of the pump field k, and,
hence, the SH field E , which is created in the course of the
spontaneous transition |1〉 → |0〉, is also parallel to k. This
longitudinal field exists everywhere where there is pump field
and the medium, and this field copies exactly the polarization
according to Maxwell’s equation for the induction ∇ · D =
∂ (ε0E + P )/∂z = 0:

E = − 2

ε0
P 	= 0, D = 0, H = 0. (10)

This does not contradict the well-known fact that the plane-
wave longitudinal field does not exist in free space [21]. This
statement means that the longitudinal field cannot propagate
in free space. The longitudinal field E exists only in the region
where the pump field creates longitudinal polarization P ∝ k.
This longitudinal field oscillating in time and space is a pure
electric-field H = 0.

As we have already noted above the TPA process is a
first-order process with respect to A2

p and a second-order
process with respect to p · Ap. Here, we study the two-photon
transition s → p, which is a pure nondipole effect. Since both
A2

p- and p · Ap-induced TPA result in the same orientation
of the TPA-induced polarization we consider here only the
A2

p contribution. The taking into account of the p · Ap TPA
process will only result in a rescaling of the SHG efficiency.

B. Gaussian pump beam and paraxial equation

In this section, we will show that a Gaussian pump beam,

E p = 1

2
Epe−ı(ωt−kz) + c.c.,

Ep = x̂E (0)
p g

(
t − z

c

) w0

w(z)
exp

(
− ρ2

w2(z)

)

× exp

[
ı

(
k

ρ2

2R(z)
− ψ (z)

)]
(11)

makes it possible to transform the longitudinal SHG x-ray
field into a transverse field which can propagate in free
space in contrast to the pure longitudinal field. Equation
(11) for a pulsed Gaussian beam is obtained in Appendix A
by convoluting of the fundamental Gaussian mode with the
Gaussian distribution of spectral components. As shown in
Appendix A, Ep satisfies the paraxial equation. Equation (11)
identifies R(z) = z[1 + (zR/z)2] as the radius of curvature
of the wave front of the beam at z, w0 as the beam waist
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FIG. 2. Two-dimensional (2D) map of the pump intensity at t =
z/c for Ne and Ar atomic vapors. The legend shows the intensity in
W/cm2.

and g(t ) = exp(−t2/2τ 2) as the temporal shape of the pulse
with duration τ . Here, w(z) = w0

√
1 + (z/zR)2, ψ (z) =

arctan(z/zR), ρ =
√

x2 + y2, w0/zR ∼ 1/kw0 � 1. The
Gaussian beam remains well collimated up to the Rayleigh
range zR = kw2

0/2 (Fig. 2).
Since the wave front is not orthogonal to z, as one can

see from the phase φ = 2k(z + ρ2/2R) of E2
p ∝ exp(ıφ), the

polarization P is slightly tilted from the z axis. To find the
matrix element V (2)

01 of the interaction with the Gaussian pump
beam (11), we need the value of this interaction at the point of
the electron r(e) with respect to the atom r = (ρ, z), namely,
at r + r(e),

〈0|eı(φ+δφ)|1〉 ≈ eıφ〈0|1 + ı δφ|1〉 = κ · 〈0|r(e)|1〉eıφı2k,

(12)

where we used the Taylor expansion φ(r + r(e) ) = φ(r) + δφ

with δφ = ∇φ · r(e). Similar to the derivation of Eq. (9),
one obtains a polarization that is oriented along ∇φ ≡
(∂zφ, ∂ρφ) = 2kκ,

P = −κ

(
eEp

2ω

)2 Nker2
01

mh̄(� − ıν)
, κ = ẑ + ρ̂

ρ

R
, (13)

instead of the beam axis ẑ ‖ k.
Let us write the optical wave equation for the SHG field E ,

∇(∇ · E ) − ∇2E + 1

c2

∂2E
∂t2

= −μ0
∂2P
∂t2

, (14)

in the usual manner [18] starting from the couple of Maxwell’s
equations (in SI units) for nonmagnetic materials (μ = 1),

∇ × E = −μ0
∂H
∂t

, ∇ × H = ∂D
∂t

. (15)

Contrary to conventional theories [18] where ∇ · E ∼ (k ·
e) = 0 for the transverse electro-magnetic-field (k ⊥ e), we
cannot ignore ∇ · E here. This is because the polarization P
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is essentially a longitudinal one [see Eq. (13)]: ∇ · P 	= 0.
To resolve this problem, we use Maxwell’s equation for the
induction D = ε0E + P ,

∇ · D = 0, ∇ · E = − 1

ε0
∇ · P, (16)

which makes it possible to rewrite the wave equation (14) as
follows:

−∇2E + 1

c2

∂2E
∂t2

= 1

ε0

(
− 1

c2

∂2P
∂t2

+ ∇(∇ · P )

)
,

E = 1

2
Ee−ı2(ωt−kz) + c.c., (17)

P = Pe−ı2(ωt−kz) + c.c.

This wave equation differs from the conventional one [18]
by the extra term ∇(∇ · P ) 	= 0 which is not equal to zero
because of the longitudinal contribution in P . We would like
to point out that when the pump field is a plane wave, there
is only a longitudinal SH field E ‖ ẑ (see Sec. II A). In this
case, the wave equation (14) becomes ∂2(ε0E + P )/∂t2 = 0,
which is very different from Eq. (17) because ∇(∇ · E ) −
∇2E = (∂2/∂z2 − ∂2/∂z2)E ≡ 0.

Now, we are at the stage to simplify the wave equation (17).
In our case, the wave propagates primarily along the z axis
with a small divergence angle (Fig. 2),

θ0 ≈ 1

2kw0
= w0

zR
∼ λ

w0
� 1. (18)

Here, λ is the wavelength of the pump field. We assume also
that the pulse duration τ is much longer than the period of
the field oscillations 2π/ω. This makes it possible to neglect
∂2E/∂z2 and ∂2E/∂t2 in Eq. (17) (see Ref. [24]) and to get the
following paraxial equation for the SHG field,(

∂

∂z
+ 1

c

∂

∂t
− ı

4k
�⊥

)
E = ı

2k
f, kw0 � 1, τω � 1,

(19)
where �⊥ = ∇2

ρ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian opera-
tor over the transverse Cartesian coordinates. The source term
on the right-hand side of the paraxial equation has now both
longitudinal ( fz ) and transverse components ( fρ ),

f̃ = ẑ f̃z + ρ̂ f̃ρ,

f̃ = 1

ε0

(
− 1

c2

∂2P̃
∂t2

+ ∇(∇ · P̃)

)
≈ 1

ε0
[(2k)2P̃ + ∇(∇ · P̃)],

P̃ = Pe−ı2(ωt−kz), f̃ = fe−ı2(ωt−kz) (20)

Taking into account Eqs. (11), (13), and (18), one can get
the following expression for the transverse and longitudinal
components of f :

fρ = − ı8kρ

ε0w2
P,

fz = ı2kP

ε0
(
z2 + z2

R

)[
2kρ2zR(ızR + z)

z2 + z2
R

− ı4zR − z

]
. (21)

One should point out that the origin of fρ is the term ∇(∇ ·
P̃) = ρ̂ ∂ρ (∂zP̃) + · · · . A simple estimation shows that the
transverse contribution dominates: | fρ/ fz| ∼ kw0 � 1. As

one can see from the paraxial equation (19) the transverse
and longitudinal components of f generate, respectively, the
transverse and longitudinal components of the SH field E.

C. Spatial distribution of the transverse and longitudinal
SH fields. Radial polarization

It is convenient to write the solution of the paraxial
equation (19) in terms of the retarded Green’s function (see
Appendix B),

E(z, ρ, t ) = 1

2π

∫
G(z − z′, ρ−ρ′, t −t ′)f (z′, ρ′, t ′)dz′dρ′dt ′,

(
∂

∂z
+ 1

c

∂

∂t
− ı

4k
�⊥

)
G(z − z′, ρ − ρ′, t − t ′)

= δ(z − z′)δ(ρ − ρ′)δ(t − t ′)�(t − t ′),

G(z − z′, ρ − ρ′, t − t ′)

= −ıδ

(
t ′ − t − z′ − z

c

)
�(t − t ′)

k

π (z − z′)

× exp

(
ı
k|ρ − ρ′|2

z − z′

)
, (22)

which guarantees that no contribution at remotely early times
t before the source f̃ (z′, ρ′, t ′) = f (z′, ρ′, t ′) exp[−ı2(ωt ′ −
kz′)] has been activated. Taking into account that ẑ′ = ẑ, ρ̂′ =
ρ̂ cos ϕ + ŷ sin ϕ, ŷ ⊥ ρ̂, one can perform an integration
over directions of ρ′ on the plane (ρ̂, ŷ) orthogonal to the z
axis using Eq. (B5),∫ 2π

0
dϕ[ρ̂′ fρ (z′, ρ ′, t ′) + ẑ fz(z′, ρ ′, t ′)] exp

(
ı
k|ρ − ρ′|2

z − z′

)

= 2π exp

(
ı
k(ρ2 + ρ ′2)

z − z′

)

×
[

− ρ̂ı fρ (z′, ρ ′, t ′)J1

(
2kρρ ′

z − z′

)

+ ẑ fz(z′, ρ ′, t ′)J0

(
2kρρ ′

z − z′

)]
, (23)

where Jn(x) is a Bessel function. One can obtain the remaining
integral over ρ ′ using Eq. (B5) and get the following expres-
sions for transverse and longitudinal contributions:

E(z, ρ, t ) = ρ̂Eρ (z, ρ, t ) + ẑEz(z, ρ, t ),

Ei(z, ρ, t ) = E (0)
p g2

(
t − z

c

)
Ji(z, ρ), i = (ρ, z), (24)

where

Jρ (z, ρ) = −2ρs0

∫ z

−∞
dz′ e�

w4(z′)α2(z′)
,

Jz(z, ρ) = ı4πw0s0

(kw0)3

∫ z

−∞
dz′ e�

w4(z′)α(z′)

×
[

2(ızR + z′)
w2(z′)α(z′)

(
z − z′ − 2k2ρ2

α(z′)

)
−(ı4zR + z′)

]
,

� = ıkρ2

z − z′ − ı2ψ (z′) − k2ρ2

(z − z′)α(z′)
,
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FIG. 3. Radial distribution of Iρ for Ne atomic vapor at z =
0.02 m. Black arrows show schematically the radially polarized SHG
field.

α(z′) = 2(z − z′)
w2(z′)

− ık

(
z − z′

R(z′)
+ 1

)
,

s0 = 8π
G

� − ıν
NzRr01re. (25)

Here, re = e2/(4πε0mc2) = 2.82 × 10−13 cm is the classical
electron radius and G = E (0)

p d01/h̄ is the Rabi frequency. It is
important to note that there is no transverse field on the beam
axis,

Eρ (z, ρ = 0, t ) = 0. (26)

Equation (24) indicates that the transverse SH field ρ̂Eρ is
oriented along the radius ρ perpendicular to the beam axis
(Fig. 3). This means that the transverse field has radial polar-
ization (see also Sec. III).

D. Role of photoabsorption

In the equations above, the photoabsorpion of x rays is ig-
nored. This approximation is valid for the pump beam whose
frequency is far from any resonance. In contrast, the SHG
field is in strict resonance with the dipole allowed transition
|0〉 → |1〉 (1s − 3p for Ne and 1s − 4p for Ar). Therefore,
this absorption channel should be taken into account. With the
solution (24) at hand, we are almost prepared to include the
photoabsorption in the SH field. As shown in Appendix C, the
photoabsorption of the SHG field modifies only the integrands
at the right-hand side of Eqs. (25) for Jρ (z, ρ) and Jz(z, ρ).
Namely, these integrands should be multiplied by the factor,

exp

(
z′ − z

2�

)
, (27)

where � = 1/Nσabs is the photoabsorption length whereas σabs

is the resonant photoabsorption cross section. According to
simulations the photoabsorption length should be larger or
comparable with the Rayleigh range,

� ∼ zR (28)

to make it possible for the SHG field to reach the optimal
value.
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FIG. 4. Two-dimensional map of the SHG intensity at t = z/c of
Ne atomic vapor. The photoabsorption is negleted. The legend shows
the intensity in W/cm2.

III. RESULTS OF SIMULATIONS AND DISCUSSION

We applied the theory outlined above to two atomic
systems Ne and Ar under the strict two-photon res-
onance (2ω = ω10) with 1s → 3p transitions for Ne
and 1s → 4p transitions for Ar. In the simulations,
the peak pump intensity used was I (0)

p = cε0|E (0)
p |2/2 =

1016 W/cm2 (Fig. 2), and the following parameters were
adopted for Ne: h̄ω1s−3p = 867.4 eV, σabs(1s − 3p) = 1.5 ×
10−18 cm2 [25], 2h̄� = 0.27 eV [26], and for Ar: h̄ω1s−4p =
3203.42 eV, σabs(1s − 4p) = 0.12 × 10−18 cm2 [27], and
2h̄� = 0.66 eV [28]. The concentration of the atoms and the
beam waist were equal to N = 1019 cm−3 and w0 = 1.0 μm,
respectively. The Rayleigh range was zR ≈ 103 and zR ≈
4 × 103 μm for Ne and Ar, respectively. The corresponding
values of the photoabsorption lengths � ≈ 0.67 × 103 and
8 × 103 μm satisfy the condition (28).

We solved the paraxial equation with homogeneous distri-
bution of the concentration. The SHG radiation is character-
ized by the intensity distributions of the transverse [Iρ (z, ρ, t )]
and longitudinal [Iz(z, ρ, t )] components of the SH field (24),

Ii(z, ρ, t ) = 1
2 cε0|Ei(z, ρ, t )|2, i = (ρ, z), (29)

and by the energy conversion efficiency,

βi = Wi(z)

Wp
, Wi(z) = 2π

∫ ∞

0
dt

∫ ∞

0
dρ Ii(z, ρ, t ). (30)

First we studied the SH field neglecting the photoabsorption.
In Figs. 4 and 5, we display the spatial distribution of the
SH intensities Iρ (z, ρ, t ) and Iz(z, ρ, t ) for Ne and Ar, respec-
tively. One can see that the transverse and longitudinal SH
fields show very different radial structures with Iρ = 0 on the
axis of the beam ρ = 0, and the transverse field ρ̂Eρ (24)
has an unusual radial polarization as shown in Fig. 3. The
transverse SH field Iρ is much stronger than the longitudinal
one Iz, and the energy conversion efficiency of the transverse
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FIG. 5. Two-dimensional map of the SHG intensity at t = z/c
of Ar atomic vapor. The photoabsorption is neglected. The legend
shows the intensity in W/cm2.

SH field is about four to five orders of magnitude larger than
that of the longitudinal SH field as shown in Fig. 6.

Because of the deeper ionization potential and smaller
core-electron transition dipole moment, the conversion effi-
ciencies of the x-ray SH fields from Ar atomic vapor are
much smaller than those from Ne (Fig. 6). However, when
the photoabsorption of the generated SH fields is considered,
the final conversion efficiencies from Ar and Ne become
comparable. Below, we investigated the conditions for the
experimental observation of the SHG process with x rays in
atomic Ne and Ar vapors by taking into account the resonant
one-photon absorption of the SH field during propagation.
The photoabsorption changes the spatial distribution of the SH
field (Fig. 7) and reduces the energy conversion efficiency in
one order of magnitude for Ne and in four times for Ar as
one can see from Figs. 6 and 8. As is expected, the range of
the SH field is limited by the photoabsorption length � and
is mainly confined in the focal region (see Fig. 7). Due to
this circumstance, the energy conversion efficiency becomes
maximal at z = zmax = 0.7 mm for Ne and zmax = 0.5 cm for
Ar. This range defines the size of the gas cell which should be
around zmax.

IV. SUMMARY

In this paper, we investigated the second-harmonic gener-
ation in systems with inversion symmetry in the x-ray region.
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FIG. 6. Energy conversion efficiencies of the transverse SH fields βρ (z) and the longitudinal SH fields βz(z) in Ne and Ar atomic vapors.
The photoabsorption is neglected. The vertical axixes show the energy conversion efficiencies multiplied by the factor 10n: For example,
1010βρ and 1014βz for Ne.
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FIG. 7. Distribution of the transverse SH field Iρ for Ne and Ar by taking into account the photoabsorption. The legend shows the intensity
in W/cm2.

Our theory is applied to SHG in neon and argon pumped
by a strong x-ray field tuned in resonance with the two-
photon transition 1s → 3p in Ne and 1s → 4p in Ar. The
nondipole population of these core-excited states is followed
by the emission of the SH field. We describe the SHG in
atoms in terms of a density matrix formalism and paraxial
equation taking into account the resonant photoabsorption of
the SH radiation. In contrast to the plane-wave pump field,
the Gaussian pump beam generates transverse SH photons
with radial polarization. By taking into account the x-ray
photoabsorption effect, the energy conversion efficiencies to
the transverse SH fields are expected to be orders of 10−11 and
10−12 in Ne (867.4 eV) and Ar (3203.4 eV) atomic vapors for
the pump 1016 W/cm2, respectively.
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APPENDIX A: THE PULSED GAUSSIAN BEAM

To obtain the pulsed Gaussian beam (11) with the carrier
frequency ω, we need to convolute the fundamental Gaussian
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FIG. 8. Energy conversion efficiency βρ (z) for Ne and Ar by taking into account the photoabsorption. The dashed lines display βρ (z)
calculated by neglecting the photoabsorption (see Fig. 6). Ne: βmax

ρ = 3.2 × 10−11 at zmax = 0.7 mm. Ar: βmax
ρ = 1.3 × 10−12 at zmax = 0.5 cm.
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mode,

E (ω, t ) = 1

2
E(ω)e−ı(ωt−kz) + c.c., E(ω) = x̂E (0)

p

w0

w(z)
exp

(
− �2

w2(z)

)
exp

[
ı

(
k

�2

2R(z)
− ψ (z)

)]
, (A1)

with the spectral distribution g(ω′ − ω) = exp[−(ω′ − ω)2τ 2/2]/τ
√

2π centered at the carrier frequency ω,

E p(ω, t ) =
∫ ∞

−∞
g(ω′ − ω)E (ω′, t )dω′. (A2)

The mode E(ω) is the eigenfunction of the stationary paraxial or Helmholtz equation,(
∂

∂z
− ı

2k
�⊥

)
E(ω) = 0. (A3)

The substitution of the fundamental mode (A1) in the convolution (A2) results in an expression,

E p(ω, t ) = x̂
2

E (0)
p

∫ ∞

−∞
dω′g(ω′ − ω) exp

[
−ıω′

(
t − z

c
− ρ2

2cR(z)

)]
w0

w(z)
exp

(
− �2

w2(z)

)
e−ıψ (z) + c.c. (A4)

We neglect the ω′ dependence of the Rayleigh range zR = k′w2
0/2 ≈ kw2

0/2 because the variation of the frequency �ω =
|ω′ − ω| ∼ 1/τ in the Fourier transform (A4) is negligibly small in comparison with the carrier frequency of the x-ray pulse:
�ω/ω ∼ 1/τω � 1. Thus,

E p(ω, t ) ≈ x̂
2

E (0)
p exp

[
−ıω

(
t − z

c
− ρ2

2cR(z)

)]
w0

w(z)
exp

(
− ρ2

w2(z)

)
e−ıψ (z)g

(
t − z

c
− ρ2

2cR(z)

)
+c.c., g(t ) = exp

(
− t2

2τ 2

)
.

(A5)

Within the paraxial approximation [24] (kw0 � 1), we can neglect ρ2/2cR(z) in the Gaussian g[t − z/c − ρ2/2cR(z)] because

z ∼ zR ∼ kw2
0 � ρ2

2R(z)
∼ w2

0

zR
∼ 1

k
,

ρ2

2cR(z)τ
∼ 1

τω
� 1. (A6)

However, we should keep ρ2/2cR(z) in the oscillatory term exp{−ıω[t − z/c − ρ2/2cR(z)]} because

ω
ρ2

2cR(z)
= kρ2

2R(z)
≈ kw2

0

2zR
∼ 1. (A7)

Finally we get Eq. (11) for E p(ω, t ).
Now, we are in the stage to show that Ep from Eq. (11) satisfies the paraxial equation,(

∂

∂z
+ 1

c

∂

∂t
− ı

2k
�⊥

)
Ep = 0. (A8)

Let us apply the operator � = −∇2 + ∂2/c2∂2t to both sides of Eq. (A2),

�E p(ω, t ) =
∫ ∞

−∞
g(ω′ − ω)�E (ω′, t )dω′. (A9)

Using the paraxial approximation, kw0 � 1, τω � 1 and Eq. (A3), we get Eq. (A8),

(
∂

∂z
+ 1

c

∂

∂t
− ı

2k
�⊥

)
Ep = eı(ωt−kz)

∫ ∞

−∞
dω′g(ω′ − ω)

k′

k
e−ı(ω′t−k′z)

(
∂

∂z
− ı

2k′ �⊥

)
E(ω′) = 0, (A10)

which shows that the pulsed Gaussian beam (11) is an eigen-
function of the paraxial operator.

The paraxial approximation is broken when kw0 �
1, τω � 1. In this case, one should restore in Eq. (19)
the second derivatives over z and time t : ∂/∂z → ∂/∂z −
(ı/4k)∂2/∂z2, �⊥ → �⊥ − ∂2/c2∂t2. However, such condi-
tions are difficult to reach in the x-ray region. For example,
the condition τω ∼ 1 corresponds to a few cycle x-ray pulse
where the pulse duration is comparable with the period of the
field oscillations.

APPENDIX B: GREEN’S FUNCTION FOR THE
TIME-DEPENDENT PARAXIAL EQUATION

Let us find the Green’s function of the nonstationary parax-
ial equation,

(
∂

∂z
+ 1

c

∂

∂t
− ı

2K
�⊥

)
G(z, ρ, t ) = �(t )δ(t )δ(z)δ(ρ),

(B1)
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where �⊥ = ∂2/∂x2 + ∂2/∂y2, ρ = (x, y), δ(ρ) = δ(x)δ(y),
and �(t ) is the step function which is equal to zero when
t < 0. Taking the Fourier transform of the Green’s function
and of the Dirac δ functions, we get

G(z, ρ, t ) = �(t )

(2π )4

∫ ∞

−∞
dμ

∫ ∞

−∞
dν

∫ ∞

−∞
d p

×
∫ ∞

−∞
dq Gμ,ν,p,qeıμt+ıνz+ıpx+ıqy,

Gμ,ν,p,q = − 2ı

μ

c + ν + p2+q2

2K

. (B2)

Keeping in mind that t � 0 and taking the integral along
the half circle in the upper half plane around the pole μ =
−c(ν + p2+q2

2K ),

∫ ∞

−∞

eıμt

μ

c +ν+ p2+q2

2K

dμ =−ıcπ exp

[
−ıct

(
ν+ p2+q2

2K

)]
,

(B3)

we obtain the following expression for the Green’s function:

G(z, ρ, t ) = −ıδ
(

t − z

c

)
�(t )

K

2πz
exp

(
ı
Kρ2

2z

)
, (B4)

which allows to find the SHG field (22) with help of the
following integrals [29]:

J0(a) = 1

2π

∫ 2π

0
eıa cos θdθ,

1

2π

∫ 2π

0
cos θe−ıa cos θdθ = ı

d

da
J0(a) = −ıJ1(a),

∫ ∞

0
e−a2ρ2

ρn+1Jn(bρ)dρ = bn

(2a2)n+1
e−(b2/4a2 ), Re(a2)>0.

(B5)

APPENDIX C: PHOTOABSORPTION OF THE SHG FIELD

The strongest absorption channel is the absorption of SH
field which is in resonance with |0〉 → |1〉 transition. To take
into account this photoabsorption, we need to add −E/2� at
the right-hand side of paraxial equation (19),

(
∂

∂z
+ 1

c

∂

∂t
− ı

4k
�⊥

)
E = − 1

2�
E + ı

2k
f, (C1)

where � = 1/σN is the length of resonant absorption of the
SHG field with the photoabsorption cross-section σ . Using the
substitution E = Ẽ exp(−z/2�), one can see that Ẽ satisfies
paraxial equation (19),(

∂

∂z
+ 1

c

∂

∂t
− ı

4k
�⊥

)
Ẽ = ı

2k
fez/2�, (C2)

with a modified source term. This equation has the solution
given by Eq. (22) with f replaced by f exp(z′/2�). Taking
this into account, we get immediately the solution of paraxial
equation with photoabsorption (C1),

E(z, ρ, t ) = Ẽe−z/2� = e−z/2�

2π

∫
G(z − z′, ρ − ρ′, t − t ′)

× f (z′, ρ′, t ′)ez′/2�dz′dρ′dt ′. (C3)

This means that, to include the photoabsorption, we should
multiply by exp[(z′ − z)/2�] the integrand at the right-hand
side of Eqs. (25) for Jρ (z, ρ) and Jz(z, ρ).
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