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Periodic nanostructures are fundamental elements in optical instrumentation as well as basis struc-
tures in integrated electronic circuits. Decreasing sizes and increasing complexity of nanostructures
have made roughness a limiting parameter to the performance. Grazing-incidence small-angle X-ray
scattering is a characterization method that is sensitive to three-dimensional structures and their
imperfections. To quantify line-edge roughness, a Debye-Waller factor (DWF), which is derived for
binary gratings, is usually used. In this work, we systematically analyze the effect of roughness
on the diffracted intensities. Two different limits to applying the DWF are found depending on
whether or not the roughness is normally distributed.

I. INTRODUCTION

Demand for smaller functional nanostructures has
driven the development of new metrology tools that can
resolve three-dimensional structures while addressing the
collateral effects of shrinking the dimensions (i.e., addi-
tional imperfections). Roughness can be produced at dif-
ferent steps of the manufacturing process, and becomes
increasingly relevant as the dimensions of the nanostruc-
tures are reduced. In the case of line-shaped nanos-
tructures (e.g., gratings), the most characteristic type
of roughness is along the edges. Line-edge roughness
refers to the randomly distributed variation of the edges
of a line. This kind of roughness is highly relevant when
producing lamellar nanostructures. For instance, in the
semiconductor industry because it results in a device-to-
device mismatch and is one of the most critical random
variation sources1. In most cases, the characterization in
the sub-nm range of the feature sizes and shapes has been
addressed in several methods, of which atomic force mi-
croscopy (AFM) and critical dimension scanning electron
microscopy (CD-SEM) are commonly used1–4. However,
such methods are of limited use when applied to the char-
acterization of nanostructures. As the complexity of the
nanostructures increases, it becomes very difficult to ac-
cess parameters such as the height or the sidewall angle
by means of a scanning method5. For this reason, a total
characterization of the line-shape is either not possible
or subject to the development of a more complex data
analysis6,7. Even if a more robust analysis is performed,
a large segment of the device area must be mapped in
order to obtain statistically significant results for param-
eters like roughness. A detailed analysis of the roughness
would significantly increase the measurement times.

In contrast, X-ray scattering techniques are a rapid
measurement alternative that can provide statistical
information in a very short time. A well-known method
for the characterization of nanostructured surfaces
is scattering under grazing incidence angles close to
the total external reflection. An advantage of grazing
incidence small-angle X-ray scattering (GISAXS) is that
it allows macroscopic areas to be inspected while also

yielding nanoscopic information. GISAXS shows high
sensitivity to the surface, as well as to the normal and
lateral structures and their imperfections. Therefore, the
intensity distribution obtained by GISAXS is sensitive
to the cross section of the nanostructures as well as to
the imperfections of the structures8–12. An imprint of
the roughness in the diffuse scattering background and
a resulting intensity loss in the diffraction orders have
also been reported12–17. The scattered intensity in the
diffraction orders is usually used to reconstruct the line
shape of the nanostructures. Therefore, it is of high
interest to have a method that can quantify roughness
and be introduced into the reconstruction process.

Several studies on the determination of the dimen-
sional parameters of lamellar gratings have identified the
roughness as a key parameter for the characterization
of nanopatterned structures 17,18. Both experimental
and theoretical reports have indicated the usability of
a damping factor to account for the roughness that
affects the intensity of the higher diffraction orders. The
damping factor is known as the Debye-Waller factor
and has been widely used in literature19–23. This factor
was analytically derived for binary gratings with line
roughness14 and investigated concerning theoretical
distributions of roughness 21,24,25. It was even included
in the reconstruction of state-of-the-art lamellar gratings
from GISAXS experiments 26,27. Therefore, it is neces-
sary to investigate the limits to which the DWF can be
applied.

To study the suitability of the Debye-Waller factor
(DWF) for describing the line roughness of periodic
nanostructures, we have systematically analyzed the im-
pact of roughness on the GISAXS scattering pattern. A
set of gratings, in which the amplitude of the roughness
was systematically changed, was designed. The gratings
were measured using SEM to deliver the reference values
for the edge placement distributions obtained. Likewise,
they were measured using GISAXS for the analysis of
the applicability of the DWF. For the computation of the
diffraction efficiencies without roughness impact, we used
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FIG. 1. Sketch of the experimental setup. An incoming wave
of wavelength λ impinges on the sample at an angle αi and is
scattered under the angles θf and αf . The red circle around
the grating target represents the illuminated area.

a Maxwell solver based on the finite element method.
For the reconstruction of the line shape and validation of
the parameter uncertainties, we used the Markov Chain
Monte Carlo sampling technique28.

II. EXPERIMENTAL SETUP

The experiments were conducted at PTB using the
four-crystal monochromator (FCM) beamline29 at the
electron storage ring BESSY II. This beamline covers a
photon energy range from 1.75 keV to 10 keV. A beam-
defining pinhole of about 500 µm was used at a distance
of about 1.5 m to the sample. Together with a scatter
guard of 1000 µm close to the sample, the beam spot size
was about 0.5 mm x 0.5 mm at the sample position. The
beam had a horizontal divergence of 0.01◦ and a vertical
divergence of 0.006 ◦.

The experimental setup is illustrated in Fig. 1. A

monochromatic X-ray beam with a wave vector ~ki im-
pinges on the sample surface at an incidence angle αi.

The elastically scattered wave vector ~kf propagates with
an exit angle αf and an azimuthal angle θf . The sam-
ple is placed in a goniometer inside an ultrahigh vacuum
chamber that can be rotated around its surface normal
at an angle ϕ.

The coordinates in reciprocal space correspond to the
momentum transfer,

qxqy
qz

 =
2π

λ

cos(θf ) cos(αf )− cos(αi)
sin(θf ) cos(αf )

sin(αf ) + sin(αi)

 . (1)

The diffraction orders are given by the intersection of the
Ewald’s sphere with the reciprocal lattice of the grating.
If the conical diffraction geometry is chosen, the projec-
tion of the incidence plane is parallel to the grating lines,

FIG. 2. Design and SEM images of the targets. a) shows
the design layout of the structure with LER and δmax = 10
nm. The red boxes show the part to be etched. In images b)
trough f), the SEM images from one part of the targets are
shown: b) is the reference grating, c) LER1: structure with
LER and δmax = 10 nm, d) LER2: LER and δmax = 20 nm,
e) LWR1: LWR and δmax = 10 nm, and f) LWR2: LWR and
δmax = 20 nm.

ϕ = 0. Then, the diffraction orders describe a semicircle
in the detector plane8,30 and the position of the orders
corresponds to qy = m 2π

pitch , where m ∈ N is the order

of diffraction. The azimuth angle ϕ was aligned in such
a way that this condition was met, with the elevation
angle from the sample horizon of the respective positive
and negative diffraction orders being equal. The angular
uncertainty achieved in ϕ was 0.01◦.

The detector is an in-vacuum PILATUS 1M detector31

with a pixel size of (172 x 172) µm2, placed at a dis-
tance of about 3.5 m. The incidence angle is approxi-
mately αi = 0.8◦. In order to obtain more information
on the structures, several parts of the reciprocal space
were mapped by varying the photon energy.

III. SAMPLE SET

A set of samples was produced by means of e-beam
lithography at the Helmholtz-Zentrum Berlin. They were
etched in a Si wafer. A set composed of five samples
was produced: one reference grating where no additional
roughness was introduced and four gratings with a dedi-
cated roughness pattern. The area of each of the gratings
is 0.5 mm by 4 mm, with the lines extending along the
longer direction. The rough gratings were produced to
systematically analyzed the effect of the edge roughness
in the scattering pattern.

Two forms of line roughness can be distinguished ac-
cording to the correlation between the two edges of the
line: line edge roughness (LER) and line width roughness
(LWR). In the first case, the center position of the line
varies along the line while the line width is kept constant
(the total correlation between the edges of each line). In
the latter case (LWR), the width varies and the position
of the line remains constant (the two edges of the line are
anti-correlated).

The parameters of the designed structures were cho-
sen in such a way that big amplitudes of the line rough-
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ness can be achieved. The samples must have a type of
line roughness that predominates over the natural rough-
ness. At the same time, the grating lines must be well-
resolved and must not collide. We also tried to avoid
other types of roughness (e.g., surface, height) by study-
ing the lithography and etch process windows with line
and space width variations. A pitch of 150 nm and a
line width of 65 nm were chosen to satisfy these require-
ments. Each line can be interpreted as a line made up
of boxes of 100 nm by 65 nm, with the longer side along
the line, and a height of 120 nm. The size and position
of these boxes are changed for the samples with rough-
ness. For the roughness design, a squared basis cell of
51 µm side-length was designed to limit the data volume
for the writing process of the stochastic lines. An exam-
ple of the design is shown in Figure 2 a), where the red
colored boxes represent the part to be etched. The peri-
odicity of the edge waviness is 100 nm, which is the same
for all rough gratings. The position or width of these
boxes varies, according to a LER or a LWR design and
following a discrete uniform distribution. Each type of
roughness (LER/LWR) is covered by two gratings with
a different maximum amplitude of the distribution. The
two maximum perturbation amplitudes were set to 10
nm and 20 nm. In the case of LWR, the maximum per-
turbations of the box width translate into a maximum
edge displacement δmax = 5 nm or δmax = 10 nm for
each sample. The e-beam writer’s resolution was set to 1
nm; and therefore, all positions of a given line edge were
located within a 1 nm grid. As a result, the discrete steps
of the distribution for the LER are 1 nm, whereas for the
LWR is 2 nm (as a minimum of 1 nm varies from each box
side). Figure 2 a) shows the design layout for a sample
with line edge roughness and δmax = 10 nm. Figure 2 b)
shows the SEM image from the reference grating, while
in images c) trough f), the SEM images of the rough
gratings are shown.

A. Pattern transfer analysis

The fidelity of the patterns transferred during the etch
process are analyzed to compare them with the roughness
values obtained with GISAXS. In our approach, we have
catalogued only one type of roughness and addressed it
in the form of blocks. Figure 2 a) shows the part to
be etched in a grid of 1 nm as red boxes. However, the
SEM image of the etched gratings (see Figure 2 c)) shows
a smoother transition between the blocks than the de-
sign because the lithography and etching act as low-pass
filters. We have analyzed the SEM images in order to
quantify the roughness distribution actually obtained.

The estimation of the structural parameters defining
the line profile from the SEM images usually involves
complex data analysis. However, in this case, our aim
was merely to analyze the roughness obtained after the
etching process of the designed structures. Therefore, a
technique for detecting the edges is used and repeated for

FIG. 3. Pattern transfer analysis. Comparison between the
design and the etched structures for the grating with line edge
roughness and δmax = 10 nm. The roughness distribution of
the design (light blue) is compared to the roughness distribu-
tion of etched area (darker blue) obtained in the SEM anal-
ysis. The red curve shows the Gauss-curve corresponding to
the variance of the distribution obtained.

all SEM images. The edge position of a line in an SEM
image is represented by a high variation of the intensity.
This intensity variation is used to estimate the bound-
aries of the line in terms of pixels. The displacement
of the edges from an ideal straight line is determined.
To obtain better statistics, several images from different
regions were used.

Figure 3 shows a comparison between the distribution
obtained and the target distribution. The discrete uni-
form distribution design is not conserved after the etch-
ing process; instead, a more Gauss-shaped distribution is
observed. In other words, the convolution of the rough-
ness distribution introduced and other roughness sources
leads to another distribution. We can assume that the
distribution of the natural roughness of the samples writ-
ten by means of e-beam matches that of a Gaussian pro-
file, as it results by the superposition of different and in-
dependent sources of roughness (as stated by the central
limit theorem). The standard deviation of the distribu-
tion, ξSEM , is considered the nominal roughness value.
This value is compared to the values obtained from the
scattering data.

IV. IMPACT OF IMPERFECTIONS ON THE
SCATTERING PATTERN

In the presence of roughness, light is scattered out of
the position of the diffraction orders and several scat-
tering phenomena can be observed10,12,32,33. The total
intensity of the out-scattered light depends on the ampli-
tude of the roughness. Although this stray light could de-
liver further information on the roughness and the nano-
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FIG. 4. Scattering pattern from the LER1 grating. a) Scattering pattern with the diffraction orders between the two dashed
red lines. Outside of this area, other scattering effects are visible. b) Closer view of one part of the scattering pattern in the
qx-qy scattering plane, where parallel lines in qx are visible. The distance between these lines corresponds to the 51 µm side
length of the squared basis cell used for the design of the roughness.

structure itself, in most cases, only the regular diffraction
orders are considered for the reconstruction.

Roughness damps the intensity of the main diffraction
orders and must be considered in the characterization of
the structures12,24,34–36. Several reports have examined
the role of different types of roughness by calculating
their impact on the scattering pattern14,17,27. In the case
of lamellar gratings, for the sake of simplicity, a binary
grating with a Gaussian distribution of roughness has
been considered. Ultimately, a similar form of a Debye-
Waller-like factor (DWF) is obtained14. However, the
applicability of this factor for three-dimensional struc-
tures has not been crosschecked. In other words, results
obtained using the Debye-Waller factor from a GISAXS
pattern was assumed to represent the real roughness of
the edge26 without further testing of this theory on true
three-dimensional structures.

The DWF is well known from crystallography and ac-
counting for the effect of the thermal motion of the atoms
in a crystal. Here, the factor has the same form and ac-
counts for the effect of position variations of the edge
along the lines. For a certain lattice size (in this 1-D
case, the pitch) the boxes oscillate with a value δ around
the equilibrium position. The displacements are normally
distributed in such a way that the mean ¡δ¿ = 0. This
results in a damping14 of the scattered intensity, follow-
ing

IDWF (qy) = I0(qy) exp (−〈δ2〉q2y)

= I0(qy) exp (−ξ2q2y),
(2)

where I0(qy) is the intensity of the diffraction orders of
the undisturbed grating at qy and ξ is the roughness pa-

rameter; thus, ξ2 corresponds to the variance of the dis-
tribution of δ. A short derivation of the DWF for LER
is included in the appendix for a better comprehension
of the limits of application of the DWF.

It should be noted that, for the design, two types of
roughness were distinguished: line edge roughness and
line width roughness. However, the Debye Waller factor
accounts only for the effective roughness of the edge and
not for the correlation of the edges. To distinguish the
roughness types, we previously reported the observation
of the resonant diffuse scattered sheets32.

Figure 4 shows the light scattered from the sample with
a low amplitude of the line edge roughness (LER1). The
diffraction orders used for the reconstruction are shown
between the red dashed lines. Concentric semicircles ap-
pear in the diffuse scattering background. For a better
view of the diffuse scattered light, a scattered pattern
measured at a different photon energy is shown in the
qy-qx scattering plane in Figure 4 b). The parallel lines
are repeated at a constant distance qx = 2π

dbasis
, where

dbasis = 51µm is the side length of the square basis cell
used for the design of the rough gratings.

V. CHARACTERIZATION OF ROUGHNESS

The Debye-Waller factor accounts for the damping of
the scattered intensity at the orders of diffraction in the
presence of roughness. The description of this factor as-
sumes that the intensity of an undisturbed grating I0 is
reduced according to the amount of roughness ξ and the
scattering vector qy. Although our reference grating is
supposed to be an ideal structure that serves as a basis
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FIG. 5. On the left is the computational domain with the
parameterized line shape. On the right, the near-field calcu-
lation of this structure with JCMsuite is shown.

for the rough structures, the line shape of the different
gratings may differ due to the etching process. Further-
more, the line shape of the etched structure is influenced
by the distribution of the blocks and the space between
the lines. Hence, some variation between the line shape
of the perfect grating and that of the rough gratings is
expected. Due to the high sensitivity of GISAXS, this
variation influences the intensity of the diffraction or-
ders. Therefore, the intensity of the reference grating
cannot be taken as a reference I0 in the equation of the
Debye-Waller factor.

Therefore, the line shape of an ideal grating must be
reconstructed for each rough structure. It is only after
this point that the Debye-Waller Factor can be applied.
In the following, the reconstruction process is outlined to-
gether with the uncertainty evaluation. Finally, the com-
parison between the standard deviation of the roughness
obtained with the DWF ξDWF and of the design distri-
bution ξdesign and of the SEM images ξSEM is given.

A. Characterization of the line shape

Finding the global best solution in a given parameter
space is the aim of every reconstruction process. This
requires an optimal measurement setup, a good describ-
ing model together with a consistent reconstruction ap-
proach, and an evaluation of the possible errors influenc-
ing those results. For the reconstruction of the line shape
of the grating from the diffraction orders, an optimiza-
tion based on the forward calculation of a model of the
line is performed.

For the computation of the diffracted intensities, differ-
ent theoretical approaches can be used. One well-known
approach is a Maxwell solver based on a finite element
method. An advantage to this method is that it can pro-
vide a rigorous solution of the near-field distribution of
any given geometrical shape. This method has already
been successfully implemented for the reconstruction of
the line shape of a lamellar grating26. However, it is not
viable to model the line roughness with a finite element

method due to the large discrepancy between the inci-
dence wavelength of the photon beam and the size of the
computational domain. Three-dimensional simulations
of the line roughness would require a high discretization
volume and very small discretization lengths along the
propagation direction (i.e., along the lines). Therefore,
instead of reconstructing a three-dimensional shape, a
two-dimensional reconstruction is usually performed with
the Debye-Waller factor accounting for the effect of the
roughness.

We used the software package JCMsuite37 as the
Maxwell solver. In Figure 5, the computational domain is
shown with a cross-section of the line profile and an illus-
trative near-field intensity distribution calculated for the
line grating. For this calculation, the lines are considered
infinite and periodic boundary conditions are applied to
the lateral direction of the computational domain. After
the computation of the near field, the diffraction efficien-
cies I0(m) are obtained by means of a post-process using
a Fourier transformation. Afterwards, the Debye-Waller
factor is applied, yielding IDWF . In an iterative process,
these intensities are compared to the measured ones.

Several optimization methods can be used38 to find
a global solution of the reconstruction problem by ex-
ploring the large parameter space. However, to obtain
the parameter sensitivity and the confidence intervals, a
Markov Chain Monte Carlo (MCMC) sampling method28

has been used. The posterior probability of the parame-
ters depends on previous knowledge of the distribution of
the parameters, which is the prior function, and on the
likelihood function of the set of parameters,

posterior probability ∝
likelihood× prior probability

(3)

The fitted parameters are the ones that define the line-
profile excluding the pitch, which is considered to be con-
stant. The prior function is considered to be uniformly
distributed for all the parameters except for the photon
energy. The distribution of the photon energy is con-
sidered as a Gauss-profile with a relative width of 10−4.
The fit is performed by maximizing the likelihood (i.e.,
maximizing the log-likelihood),

` =
∏
E,m

[2πσ2(m,E)]−1/2 exp(−χ2/2), (4)

where χ2 corresponds to

χ2 =

(
IDWF

(
m,E

)
− Iexp

(
m,E

))2
σ2(m,E)

, (5)

and σ(m,E) comprises the uncertainty of the measure-
ment and of the simulation. m ∈ N is the diffraction
order and E the energy. A breakdown of this factor is
performed in the following section.
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a) b) c)

FIG. 6. Comparison of the projected posterior distribution for the height and width. The black contours designate the
area within 1σ. a) Distribution when only the diffraction intensities of one measurement (6keV incoming photon energy) are
considered for the reconstruction. b) Three measurements with different incoming photon energy (6 keV, 6.05 keV and 6.1
keV) are considered for the optimization. c) Posterior distribution when the three measurement for different incoming photon
energies and the divergence of the photon beam are considered.

The existence of multiple modalities in the distribution
of the posterior probability is a common issue in the re-
construction process. In order to increase the measured
points, several patterns were recorded using different in-
coming photon energies. Here, we used the incoming pho-
ton energies of 6 keV, 6.05 keV and 6.1 keV for the recon-
struction. Figure 6 a) compares the projected posterior
probability distribution when only one photon energy is
considered or all three different energies b) are consid-
ered at the same time. The low dimensional projection
of the posterior distribution is shown for two important
geometrical parameters: the height h and the line width
or critical dimension cd. The number of modalities is sig-
nificantly reduced with an increased number of GISAXS
scattering patterns obtained at different energies.

Even though the reciprocal space was mapped using
several incidence photon energies, multi-modalities of the
posterior distribution are still found. As indicated previ-
ously, the divergence of the incoming beam is ∆h = 0.01◦

horizontally and ∆v = 0.006◦ vertically. In spite of the
fact that the values of the divergence are small, they have
a considerable influence on the intensity of the measured
diffraction orders (see Figure 7). By considering the di-
vergence of the beam as a Gauss function weighted over
the angles in the interval of the total divergence in the re-
construction process, the other possible solutions become
less significant. Figure 6 c) shows the posterior distribu-
tion of the height and line width when the optimization is
performed for three different measurements and when the
divergence is considered. Comparing this approach with
the other two, we can conclude that a better definition
for the solution is obtained when the divergence is consid-
ered. However, even if the beam divergence is taken into
account, alternative solutions are not completely ruled
out.

B. Uncertainty analysis

The sources contributing to the uncertainties can be
grouped into two different types: an experimental er-
ror σexp and a computational error σcomp. In turn, two
errors known from the detector contribute to the exper-
imental error31. Due to the Poisson statistical distribu-
tion followed by the photon counting detector, we have
σN (m,E), where N is the number of counts per order of
diffraction m, and E is the energy. To account for the
non-homogeneity of the detector, there is an additional
contribution of σhom(E) = 2% of the measured intensi-
ties. Although this factor is energy-dependent, in this
case, where the energies are close to each other, it can be
considered to be the same for the three energies. Addi-
tionally, the uncertainty of the incident photon energy is
taken into account by including it in the reconstruction
process as a parameter with a suitable prior.

However, it was reported that the experimental error
is not relevant in comparison with the computational er-
ror26. The computational error, which accounts for the
assumptions and approximations performed to speed up
the computation, is the largest contribution to the to-
tal error. Two sources contribute to this error: a purely
numerical error and another error accounting for the ap-
proximation performed in the calculation of the diver-
gence. For the reconstruction of the line profile, the ex-
ploration of a large parameter space is needed. This
would mean unacceptable calculation times when the
very best solution of the solver is pursued. The preci-
sion of the calculation of the solver can be tuned by the
finite element mesh size d and the polynomial degree p
of the ansatz function to be solved. By tuning these
parameters, a compromise must be found between two
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b)a)

FIG. 7. a) Influence of the vertical and b) horizontal divergences calculated for the line profile shown in Figure 5.

solutions: one that is reasonable in terms of time and
one that is acceptable in terms of uncertainty. Including
the effect of the divergence in the reconstruction process
also entails an increase of the computation time for each
function evaluation. Therefore, the number of points to
weight the Gauss function must also be restricted.

Although each of these contributions can be evalu-
ated separately, this evaluation is itself time consuming.
Furthermore, this rather simple approach may disregard
other error contributions. Therefore, an error model that
can be included in the fit would be more effective in in-
cluding all the possible error sources. The computational
errors can be considered to be Gaussian distributed and
energy dependent σcomp(E)26. An error model that was
presented by Heidenreich et al.39 to account for the errors
of a virtual scattering experiment. Considering no sys-
tematic errors and with the error normally distributed,
the variance is given by

σ2
comp(E) = [a(E)I(m,E)]2 + b2, (6)

where a(E) and b are independent. Thus, the final
σ(m,E) is

σ2(m,E) = [a(E)I(m,E)]2 + b2︸ ︷︷ ︸
σ2
comp(E)

+σ2
N (m,E) + σ2

hom(E)︸ ︷︷ ︸
σ2
exp(m,E)

,

(7)
where σexp is known and σcomp is included in the op-
timization process. If only the experimental error were
considered the total error contribution of the reconstruc-
tion process would be underestimated. The factor a(E)
in principle accounts for the numerical error and for the
approximations that are performed in order to calculate
the divergence.

For the simulation, a polynomial degree p= 4 and a
finite element size d = 6 nm were chosen. For the di-
vergence, a five-point Gauss function was considered in

each direction. Although the five-point approximation
could be a good mathematical approximation a priori,
the orders of diffraction may be located in sensitive po-
sitions, which would lead to unexpectedly high errors.
When considering the divergence, new orders of diffrac-
tion may appear at the horizon. This would result in a
re-distribution of the total scattered intensity.

C. Results and discussion

The optimization was performed using the Markov
Chain Monte Carlo28 sampling technique with the likeli-
hood function given in eq. 4 and the definition of σ2 in
eq. 7. The posterior distribution of the optimization is
analyzed after the burn-in fraction of the Markov chains
for the LER1 sample. For the other samples, the MCMC
technique is also performed although no uncertainty eval-
uation takes place to reduce the computation time. How-
ever, the confidence intervals are expected to be in the
same range.

Multiple modalities

In order to reduce the multiple modalities of the pos-
sible solution, additional measurement data sets and the
divergence of the beam were included in the optimiza-
tion. This resulted in a better defined solution although
the solution was still not completely reduced to one. The
probability of finding the solution around the distribution
of the height at 121± 2 nm changes with each approach,
in such a way that 49% of the total samples lay under the
curve when only one measurement is fitted in compari-
son to the fit with three measurements (63%) and three
energies and the divergence, where 88% of the samples
are found. The issue of the multiple modalities of the
posterior distribution could be solved by other means of
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FIG. 8. Comparison between the extracted intensities from
the measurements (red dots) and the fit (blue dots) for the
LER1 sample. The red shaded area corresponds to the fitted
uncertainty.

obtaining complementary measurements of the test struc-
ture or by means of prior knowledge concerning the di-
mensions that are expected after the etching process23.

Considering the optimization where the divergence of
the photon beam is disregarded, the fitted error contri-
bution reaches values higher than 22 %, while for the fit
where the divergences are considered, the error contribu-
tion does not overtake 15%. This indicates that intro-
ducing the divergence is suitable for reducing the total
error of the method.

Error model

An error model was fit (see eq. 6) resulting in values
for a(E) from 11.8 % for the measurement at 6 keV to
14.6% for the measreuement at 6.1 keV. There errors are
much higher than the known experimental errors. In a
parallel study, the individual contributions to the total
error were studied following the procedure previously re-
ported by Soltwisch et al.26. These contributions lead
to σcomp ≈ 9%, which corresponds rather well to the
value of 11.8% that was delivered by the MCMC. The
individual analysis is close to the fitted value although
some factors are still underestimated. The slightly higher
MCMC-values may be due to an ignored numerical error
or to an overlooked parameter in the description of the
model or in the determination of the experimental error
sources. Therefore, by fitting an error model, a more
complete analysis of the uncertainties is delivered. By
contrast, the term b is negligible. It accounts for the
computational background noise. As well as it could de-
liver the experimental background noise although this is
inherently absent in a PILATUS detector.

A better error definition may also be obtained by fit-
ting an error model that considers the dependency of the
numerical error with the order of diffraction. However
this would greatly increase the parameter space to be
traced.

Characterization of the line

For the determination of confidence intervals, poste-
rior distributions were analyzed. The confidence interval
of each parameter corresponds to 1σ from the mean of
the density distribution of the fits. In Table I, the values
obtained for the main parameters (height, cd, sidewall
angle and roughness) are listed. The results for the ref-
erence grating have been published elsewhere 26, where
the vertical divergence was disregarded. The small but
noticeable variation in the height of the structures across
the wafer is explained by the signature of the plasma
etching process. The variation in the height, together
with the introduction of the line roughness, also leads to
slight variation in the line profile. For the LER1 sam-
ple, the best fit is shown in Figure 8. There is a good
agreement between the results of the optimization and
the experimental data.

Roughness analysis

By analyzing the SEM images, the roughness distribu-
tion after the etching process was obtained. Although
the design values were not met after etching, the trend
of the roughness parameter was conserved. The line po-
sition follows a normal distribution instead of a uniform
one. In table I the standard deviation of the design dis-
tribution ξdesign is displayed together with the standard
deviation obtained using the SEM analysis ξSEM and the
standard deviation obtained from the DWF ξDWF . For
the determination of the roughness from the scattering
pattern, the Debye-Waller factor was introduced to the
optimization process. Figure 9 a) shows a comparison
between the values obtained via SEM and via scattering.
The fit of the DWF (red dots) delivers smaller values
than the SEM and fails to detect large amplitudes of the
roughness. It should be noted, that SEM images deliver
a very local value of the roughness, while in GISAXS, the
whole sample is analyzed within one measurement. SEM
images also have a drawback in that they provide a top
picture of the structure, while in GISAXS, the average
roughness over the height of the structure is given.

In an extra y-axis, the ratio between the incoher-
ent scattered intensity (intensity strays away from the
diffraction orders) and the coherent intensity (total in-
tensity of the diffraction orders) is shown. The mea-
sured fraction of the total incoherent scattering is limited
by the area of the detector, but the contributions decay
when increasing the exit angles. The data shown (green
dots) corresponds to the average ratio found over twenty-
one measurements that were done with different photon
energies and for each grating. This ratio shows the same
trend as the roughness values obtained by means of SEM.
The signal scattered into the diffraction orders depends
on the amplitude of the roughness, as the DWF describes.
For the case of very large roughness amplitudes (that
is, for the LER2) the DWF is no longer applicable (see
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TABLE I. Fit results obtained from the scattered intensities using a Maxwell solver.

Parameter reference LER1 LER2 LWR1 LWR2 limits
h/nm 119.50 ± 0.11 121.3 ± 0.3 122.60 122.93 123.55 [110,134]
cd/nm 67.30 ± 0.31 64.9 ± 1.2 63.65 64.56 63.09 [50,80]
ω/◦ 84.73 ± 0.33 83.9 ± 0.6 80.67 85.62 82.58 [75,90]
ξdesign/ nm - 4.1 8.1 2.0 4.1 -
ξSEM/nm 2.2 6.4 11.8 3.6 6.5 -
ξDWF /nm 1.87 ± 0.14 5.11 ± 0.12 7.66 3.12 5.26 [0,15]

FIG. 9. a) Comparison of the roughness values obtained with SEM (black) ξSEM and scattering (red) ξDWF as function of
the standard deviation of the roughness of the design ξdesign. In the second y-axis, the ratio between the incoherent scattered
intensity and the coherent scattered intensity is shown (green). Its trend correlated with the roughness values obtained with
SEM. b) Applicability of the DWF. The gray dotted line shows the expected trend of the Debye-Waller factor for the roughness
values obtained by SEM. The red dots represent the intensity loss obtained for each ξSEM at the highest diffraction order used
(n = 7).

Fig. 9). The value of the roughness is underestimated
by the Debye-Waller Factor. A brief derivation of the
DWF is done in the appendix to discuss better the extent
to which this factor faithfully describes line-edge rough-
ness. It is shown that the DWF is applicable for Gauss
distributions of the roughness or for non-Gaussian dis-
tributions when the factor q2yξ

2 is small enough (usually

q2yξ
2 << 1). However, in this specific case the DWF de-

livers roughness values close to the SEM values for q2yξ
2

larger than 1 (LER1, LWR1 and LWR2 gratings), while
it is not working for the distribution with the largest am-
plitude of the roughness (LER2 grating). There are two
possible explanations for this behaviour. In one hand,
the roughness distribution is close to a Gauss distribu-
tion and therefore, its impact on the scattered intensities
can be evaluated with the DWF. On the other hand, sev-
eral measurements were done and there is a statistically
significant number of diffraction orders that are in the
region or close to the region where the approximation is
still applicable, independently on the distribution. With
increasing values of q2yξ

2 the discrepancies of the impact
of a Gauss-distribution are larger and therefore is not
longer applicable for the LER2 grating.

Additionally, it should be mentioned that for the

derivation of the DWF a binary grating is considered.
Hence, the effect of large variations on the height, as
could result from the etching process of such a rough
sample, are disregarded. We have also considered two
types of roughness: LER and LWR. However, this dis-
tinction cannot be obtained from the intensity distribu-
tion of the diffraction orders. Only the observation of the
diffuse scattering pattern (or more precisely, the resonant
diffuse scattering sheets) can provide information on the
prevailing type of roughness32.

VI. CONCLUSION

We have analyzed the applicability of the Debye-Waller
factor (DWF) for the characterization of the roughness of
lamellar gratings. For the systematic analysis of the im-
pact of the roughness in the scattering pattern, we used
a set of samples with a predominant line edge rough-
ness (LER) or line width roughness (LWR). Each line of
the grating is designed to follow a uniform distribution.
However, the analysis of the images obtained by means
of SEM shows that the distribution of the roughness
is Gaussian, due to the convolution of the pre-designed
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roughness with other roughness sources.
The scattered intensities in grazing incidence small-

angle x-ray scattering (GISAXS) are sensitive to small
variations in the shape and to roughness. In the recon-
struction process of the nanostructures, an error model
was introduced to account for errors that are difficult to
define in advance. For the description of the impact of the
roughness on the scattered intensities, the Debye-Waller
factor was used. This factor is sensitive to variations in
the roughness amplitude. While we were able to show the
validity of the DWF for values q2yξ

2 < 3, the DWF over-
estimates the actual intensity loss for the large roughness
amplitudes. This is because for larger values of q2yξ

2 the
discrepancies between a Gauss and a non-Gauss distri-
bution of the roughness become critical. The prevalent
type of roughness (LER/ LWR) is observable only in the
resonant diffuse scattering pattern.

In summary, the applicability of the Debye-Waller fac-
tor for non-Gaussian roughness distributions is restricted
to small values of the product q2yξ

2 (that is, q2yξ
2 < 1 ).

Therefore, the roughness values accessible with the DWF
are limited by the number of orders of diffraction consid-
ered if the roughness is not perfectly Gauss-distributed.
It is worth to mention, that this is of high importance
when decreasing the sizes of the nanostructures. Nanos-
tructures with smaller periods scatter to higher values of
qy. In those gratings, small variations of the roughness
distribution from that of a Gaussian would prevent the
use of the DWF. Therefore, further investigations of the
effects of roughness in the scatter pattern are necessary.

VII. APPENDIX

In Sec. IV, the Debye-Waller factor was briefly intro-
duced as a common method used to account for the at-
tenuation of the scattered signal due to the roughness.
Here, for a better understanding on the applicability of
the Debye-Waller factor, a short derivation of this factor
for the case of line edge roughness is given. For the line
width roughness, it can be done analogously.
For a perfect binary grating, the scattered intensity I0 is
given by40

I0 = |
N∑
j=0

fj exp(−iqyrj)|2, (8)

where fj is the form factor of the line at position rj . For
a grating of pitch p, the total length of the grating in
the perpendicular direction of the lines is Np and the
position of each line is given by rj = jp.
In the case of line edge roughness, the position along the
line varies according to

rj = jp+ δj , (9)

where jp is the ideal position of the line j (or the mean
position of the line), δj is the displacement of the line

and rj the new position of the edge. Considering δj to
be independent of the original line position, we have that

N∑
j=0

fj exp(−iqyjp)
〈

exp
(
− i(qyδ)

)〉
(10)

The latter factor can be written as

〈
exp

(
− i(qyδ)

)〉
=
〈

cos(qyδ)
〉
− i
〈

sin(qyδ)
〉

(11)

where the second term vanishes for even distributions.
In the following, we formulate the solution when two
assumptions are done: for a Gauss distribution of the
roughness and for small values of qyξ.
We have that the ensemble average is

〈
cos(qyδ)

〉
=

∫∞
−∞ cos(qyδ)ρ(δ)dδ∫∞

−∞ ρ(δ)dδ
, (12)

where ρ(δ) is the distribution of the roughness.

• If the distribution of the roughness is considered to
be Gaussian centered at 0 with a variance ξ,

ρ(δ) =
1

ξ
√

2π
exp

(−δ2
2ξ2

)
. (13)

So that, the denominator in eq. 12 is 1 and

〈
cos(qyδ)

〉
=

∫ ∞
−∞

cos(qyδ)
1

ξ
√

2π
exp

(−δ2
2ξ2

)
dδ. (14)

Using that41∫ ∞
0

exp(−a2x2) cos(bx)dx =

√
π

2a
exp

(−b2
4a2

)
(15)

we have that

〈
cos(qyδ)

〉
=

1

ξ
√

2π

ξ
√

2π

1
exp

(−2q2yξ
2

4

)
(16)

Finally, the eq. 11 can be written for a Gauss-
distribution of the roughness as

〈
exp

(
− i(qyδ)

)〉
= exp

(
−
q2yξ

2

2

)
(17)
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• In the case of non-Gaussian but symmetric distri-
butions, the eq. 11 can be reduced to the < cosx >
factor. It can be expanded as a Maclaurin series,
obtaining the same factor as in eq. 17 for small val-
ues of qyξ.

〈
cos(qyδ)

〉
≈ 1− 1

2
< (qyδ)

2 > + ... , (18)

Considering qyδy - or for a given qy, the
displacement- small, the rest of the factors are neg-
ligible. The second order term can be simplified
to

< (qyδ)
2 >= q2y < δ2j >= q2yξ

2, (19)

where ξ is the variance of the distribution.

It results in〈
cos(qyδ)

〉
≈ 1− 1

2
< (qyδj)

2 >= 1−1

2
q2yξ

2 ≈ exp(−1

2
ξ2q2y).

(20)

For the calculation of the scattered intensity, we have
that

I ' |
∑
j

fj exp(−iqyjp) exp(−1

2
ξ2q2y)|2 = I0 exp(−ξ2q2y),

(21)
where I0 is the intensity from an undisturbed grating.

Therefore, the DWF is applicable either for small values
of qyξ (that is, qyξ < 1) or for roughness that is Gauss-
distributed.
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