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Abstract 

Layered heavy-metal square-lattice compounds have recently emerged as potential Dirac fermion materials 
due to bonding within those sublattices. We report quantum transport and spectroscopic data on the layered 

Sb square-lattice material LaCuSb2. Linearly dispersing band crossings, necessary to generate Dirac 

fermions, are experimentally observed in the electronic band structure observed using angle-resolved 

photoemission spectroscopy (ARPES), along with a quasi-two-dimensional Fermi surface. Weak 
antilocalization that arises from two-dimensional transport is observed in the magnetoresistance, as well as 

regions of linear dependence, both of which are indicative of topologically non-trivial effects. 

Measurements of the Shubnikov – de Haas (SdH) quantum oscillations show low effective mass electrons 

on the order of 0.065me, further confirming the presence of Dirac fermions in this material.  

Introduction 

Topological materials have become very popular over the last decade due to the new and interesting 
behaviors they display, such as protected edge states, novel excitations, and other, unconventional 

behaviors. There are now many instantiations of topologically non-trivial matter, such as two-dimensional 

quantum spin Hall phases1-2, three-dimensional topological insulators3-5, Dirac and Weyl semimetals6-8, and 
nodal line semimetals9,10. All of these and more have been the main scope of many theoretical and 

experimental studies. New materials under these classes present new and exciting possibilities for 

integration into technology. 

Of the many topological classes, Dirac materials present particularly interesting possibilities. In these 

materials, the energy spectrum of low-energy electrons can be described by the relativistic Dirac equation, 
as opposed to the conventional Schrödinger equation. These Dirac fermions can then give rise to a variety 

of interesting phenomena, such as large, linear magnetoresistances7,11, quantum Hall effects12, and high 

carrier mobilities arising from topological protection13,14.  

There exist many theoretically and experimentally verified examples of Dirac materials. Aside from the 
Dirac fermions found on the surfaces of topological insulators, these can also be observed in two-

dimensional materials such as graphene15, or in bulk three-dimensional Dirac semimetals such as Na3Bi6 
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and Cd3As2
7,11,13

. Recently Dirac fermions have been found in ‘112’ materials with two-dimensional 
structures, such as layered AMnSb2 and AMnBi2 (A = Ca, Sr, Ba, Eu, Yb)16-24 and LaAgSb2 and LaAgBi2

25-

27.  

The study of Dirac materials often requires a series of complex measurements to establish non-trivial band 

topology. Their electronic band structures can be calculated using Density Functional Theory (DFT), but 

often require expensive functionals to ensure a high degree of accuracy. By using angle-resolved 
photoemission spectroscopy (ARPES), this band structure can be experimentally accessed, which can then 

be compared to a calculated one for complete understanding. In addition, given the small size of most Dirac 

Fermi surfaces, these materials display quantum oscillations at relatively low magnetic fields. ARPES and 
quantum oscillations measurements, in conjunction with carrier transport measurements are therefore 

powerful tools to identify the presence of Dirac fermions.  

Here we present ARPES, transport, and quantum oscillation data on LaCuSb2, a tetragonal 112 material 

with an Sb square lattice. We find two-dimensional weak antilocalization and linear magnetoresistance 

through transport measurements and confirm the presence of linearly dispersing Dirac bands in the band 
structure. We observe Shubnikov-de Haas oscillations in magnetic fields up to B = 12 T and as high as T = 

30 K and determine a light effective mass of m* = 0.065me, as expected for Dirac fermions. Our results 

demonstrate the presence of Dirac fermions in LaCuSb2.  

Results and Discussion 

LaCuSb2 crystallizes in the tetragonal space group P4/nmm (no. 129) and contains alternating layers of a 

two-dimensional layer of CuSb2 tetrahedra and a two-dimensional Sb square net, separated by La atoms, as 

shown in Figure 1a. It has been reported that variations in Cu content can lead to dramatic changes in the 

lattice parameters in this material, but our lattice parameters of a = 4.3828(2) and c = 10.2097(7) are 

consistent28 with a Cu occupancy of 1.0. In addition, small amounts of excess Sb can be found in all 

synthesized samples, and is limited to a maximum of 1.5% by mass. 

It is the bonding of the Sb atoms in the square net layers that can lead to the formation of linearly dispersing 

Dirac or Weyl crossings in the electronic band structure due to the symmetry of the Sb p band overlap10,29,30. 

The bandwidth of these linearly dispersing bands is determined by the Sb-Sb interatomic distance, which 

is 3.08Å in LaCuSb2. This distance is shorter than in some of the other aforementioned 112 Dirac materials, 

and thus results in linearly dispersive bands with relatively large bandwidths16-27. Using a path indicated by 

the primitive tetragonal Brillouin zone shown in Figure 1b, the calculated DFT band structures for LaCuSb2 

excluding and including spin-orbit coupling (SOC) are shown in Figure 1c and Figure 1d, respectively. 

The two-dimensionality of the structure is reflected in the band structure as the bands become flat and 

minimally dispersive in reciprocal space directions along kz, such as Γ – Z and M – A. Dirac fermion 

behavior may arise as a result of the linearly dispersive bands that cross at certain points in the Brillouin 

zone, which has also been observed in some of the aforementioned square-net materials. In LaCuSb2, 

however, there are also several parabolic bands crossing the Fermi level that are primarily Cu-d bands, 

which may result in some conventional, multiband effects. Given that Cu is d10 in this system, no magnetism 

or strong electron correlations are expected.  

To further understand the electronic structure of materials, ARPES measurements were performed and 

compared to DFT calculations. Figure 2a shows a constant energy cut at the Fermi level (Ei = 0 eV) of the 

first BZ and its vicinity, elucidating the nature of the LaCuSb2 Fermi surface. It consists of a diamond-like 

feature centered around the Γ point connected to the next BZ at the X points, and contains no bands around 

the M point. This kind of diamond-shaped Fermi surface is common for square-net based nodal line 

materials30-32. The literature theoretical value of 0.719 Å-1 for the Γ-X distance is in accordance with the 
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experimental data33. DFT calculations of the Fermi surface, shown in Figure 2b, display similar structural 

behavior but also reveal a cylindrical internal structure inside the diamond centered around Γ, which is 

weakly visible in the experimental first BZ. Since intensity modulations due to matrix element effects 

resulting from multiple atoms in the basis affect successive BZs differently, it is also clearly resolved with 

a higher intensity in neighboring BZs. Figures 2c and 2d show the experimental and theoretical dispersion 

plots along the path shown in Figure 2b. Both show several bands along Γ-X, dispersing linearly over a 

large energy range and crossing the Fermi level (two bands with comparably low intensity are marked with 

two arrows). To ensure an accurate comparison with the data, one must consider the effect of SOC on the 

band structure, since the linearly dispersing bands arise from Sb p bands, which can show large avoided 

crossings due to the large atomic mass of Sb. It should be noted that Figure 2d only shows the kz = 0 plane, 

since it provides the best agreement with the ARPES data (for a comparison with the kz = π plane, see the 

Figure S1 in the SI). 

Since LaCuSb2 is an inversion-symmetric material and time-reversal symmetry is not broken, all bands in 

the bulk band structure are at least two-fold spin degenerate. In addition, the nonsymmorphic symmetry of 

space group P4/nmm forces additional band degeneracies at the high symmetry points X and M (and R and 

A, respectively). Along the high-symmetry lines X-M and R-A, however, the degeneracy is not protected 

by nonsymmorphic symmetry in the presence of SOC, although the splitting of the bands appears to be 

quite weak and proves difficult to resolve in the experimental data. Deviations between the experimentally 

observed bands and the presented DFT calculations can be explained by a small change of kz throughout 

the BZ and a small offset from the high-symmetry plane kz = 0 for the presented constant photon energy of 

80 eV. Overall, however, the experimental band dispersions are in good agreement with the DFT 

calculations, confirming the presence of linearly dispersing bands belonging to Dirac crossings that can 

give rise to Dirac fermions in LaCuSb2. 

Transport measurements of LaCuSb2 provide insight into its electronic behavior. The resistivity of LaCuSb2 

at room temperature amounts to 1.3 mOhm-cm. The resistivity decreases with temperature, as expected for 

a metal, and generally increases with applied magnetic field, as shown in Figure 3a. The residual resistivity 

ratio (RRR) is 8.5, as given by 𝜌250𝐾/𝜌3𝐾, and is indicative of a high-quality crystal. The magnetoresistance 

(MR) of LaCuSb2, however, shows more interesting behavior. At low magnetic fields and low temperatures, 

the MR defined as (𝜌(𝐻) − 𝜌(0))/ 𝜌(0)  × 100  increases dramatically before becoming linear, as shown 

in Figure 3b. With increasing temperature, the region of linearity is suppressed, as well as the magnitude 

of the sudden upturn in MR. This sudden upturn in MR has been observed in other systems and can be 

explained by quantum interference effects such as weak localization or weak antilocalization, the latter of 

which has often been observed in the 2D Dirac surface states of topological insulators and in 3D Dirac 

semimetal thin films34-37. Furthermore, linear magnetoresistance has been known to arise in topological 

systems, and its presence in LaCuSb2 further gives evidence for the presence of Dirac fermions in this 

system. Hall measurements of LaCuSb2 indicate that the dominant carriers are electrons, given the negative 

slope of Rxy, with a relatively high carrier concentration of 2.74 × 1018 cm−3 at 3 K, as shown in Figure 

3c. This value requires a consideration of a large Hall angle given the large difference in 𝜌𝑥𝑥  vs. 𝜌𝑥𝑦 , and 

complicates symmetrization of the data, resulting in apparent non-linearity. This is likely due to the 

presence of other bands at the Fermi level which act to enlarge the Fermi surface from that expected for a 

simple Dirac system. Further studies are required to investigate whether the Hall behavior is intrinsically 

linear or not.  

As aforementioned, a large upturn is observed in the magnetoresistance of LaCuSb2, especially at low 

temperatures. This upturn can be ascribed to weak antilocalization, a phenomenon which occurs in the 
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quantum diffusive regime of metallic materials, whereby the electron phase coherence lengths are longer 

than the electron mean free path lengths. Applying a magnetic field and consequently breaking time reversal 

symmetry results in a dramatic decrease in conductivity with small applied fields, or a converse increase in 

resistivity, i.e. what is observed in our magnetoresistance data. Weak antilocalization has been observed in 

many topological materials harboring Dirac fermions because of the 𝜋 Berry phase picked up after 

circulating around the Fermi surface. This 𝜋 Berry phase then generates destructive quantum interference 

which can suppress backscattering and lead to an increase in conductivity with decreasing temperature. 

However, applying a magnetic field and breaking time-reversal symmetry negates this effect and results in 

a large decrease in the conductivity with small applied fields.  

Based on Hikami-Larkin-Nagaoka (HLN) theory, the weak antilocalization in LaCuSb2 can be understood 

by fitting the magnetoconductivity to the following: 

Δ𝜎(𝐵) =
𝛼𝑒2

2𝜋2ℏ
[𝜓 (

1

2
+

ℏ

4𝑒𝐵𝐿 𝜑
2 ) − ln (

ℏ

4𝑒𝐵𝐿𝜑
2 )] 

Where 𝛼 = −
1

2
 due to the 𝜋 Berry phase, 𝜓 is the Digamma function, and 𝐿𝜑 is the phase coherence length. 

The temperature dependence of 𝐿𝜑 can be seen in Figure 3d. It follows a 𝑇−0.58(4) law, which is very close 

to the 𝑇−0.5 relation expected for a two-dimensional system34. This indicates that the weak antilocalization 

in this material is two-dimensional, which may be due to the dimensionality of the Sb square-lattice. 

However, weak antilocalization in bulk materials is uncommon, and has only been observed in a very small 

number of bulk materials. Weak antilocalization effects are more commonly observed in topological 

insulator films, due to the pronounced effect of the Dirac surface states due to the thinness of the samples35-

37. An alternative explanation, based on a two-band model, can be found in the supplementary information. 

In LaCuSb2, periodic SdH quantum oscillations in the resistivity at high magnetic fields can be observed, 

shown in Figure 4a for T = 0.27 K as a function of inverse field. The single crystal structure, patterned by 

focused-ion-beam lithography, used to measure these is shown in Figure 4b. These oscillations are due to 

the cyclotron motion of carriers on the Fermi surface. Performing a Fast Fourier Transform (FFT) operation 

on SdH data collected at temperatures up to T = 30 K reveals the amplitudes of dominant frequencies of 

oscillation, as shown in Figure 4c. The main frequency of oscillation is observed to be 49.6 T. Lastly, by 

considering the temperature dependence of the 49.6 T FFT amplitude shown in Figure 4c, the effective 

carrier mass 𝑚∗ can be obtained by fitting to the Lifshitz-Kosevich theory, as shown in Figure 4d38. This 

value was found to be 𝑚∗ = 0.065𝑚𝑒, where 𝑚𝑒 is the electron rest mass. Through the oscillation 

frequency, we determine the Fermi momentum 𝑘𝐹 to be equal to 3.88 × 108 m−1. By considering the 

Onsager relation for the carrier concentration of 𝑛 = [2/(2𝜋)3] (4𝜋/3𝑘𝐹
3), we obtain 𝑛 = 1.97 ×

1018 cm−3, which is in agreement with the Hall measurement result. It should be noted that this applies to 

a isotropic three-dimensional pocket and not a two-dimensional one, and thus LaCuSb2 appears to display 

more three-dimensional behavior than other 112 systems. The ultralow carrier mass obtained is found to be 

smaller than that for other 112 Dirac systems16-27, and is generally lower than one would expect for 

conventional (non-Dirac) carriers. These observations provide strong evidence for the presence of Dirac 

fermions in LaCuSb2.  

Our results show strong evidence for the presence of Dirac fermions in LaCuSb2. In addition to this 

observation, there have been potentially interesting claims of intrinsic superconductivity in this system in 

the literature, under T = 0.9 K39,40, that in the context of our discovery, may present an interesting example 

of a material at the interface of superconductivity and topology41. Our measurements, however, of both 
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resistivity and specific heat in multiple samples down to temperatures far below T = 0.9 K, have shown no 

anomaly consistent with a superconducting phase transition. Subsequent studies could vary the synthesis 

techniques and search for superconductivity in this interesting system.  

Experimental 

Centimeter-sized single crystals of LaCuSb2 were grown by the flux method using antimony42. 

Stoichiometric amounts of La (99.99%) and Cu (99.99%) were placed in an alumina crucible, and Sb 

(99.999%) was added in thirty-fold molar excess as both reagent and flux. The crucible was placed inside 

a sealed fused silica tube under vacuum, and the reaction was stepped to 1050°C, soaked for 12 hours, then 

cooled slowly to 650°C at a rate of 5°C per hour. The reaction vessel was then centrifuged to remove excess 

Sb flux. Large crystals, limited mainly in size by the crucible, can be obtained. The crystals are visibly 

layered and easy to cut and handle, and are air and moisture stable. 

Representative crystals were ground and their crystal structure determined using X-ray diffraction on a 

laboratory Bruker D8 Focus diffractometer (Cu tube, Kα1 1.540596 Å, Kα2 1.544493 Å) with a LynxEye 

detector. The structure was found to be consistent with stoichiometric LaCuSb2 based on previous structural 

studies of this material28,33. 

Electronic transport and heat capacity data were collected on crystals in a Quantum Design physical 

properties measurement system. Resistivity measurements used standard four probe geometry on a bar 

shaped cut crystal, whereas Hall measurements were performed using a crystal cut in the shape of a square, 

with leads attached in the proper Hall geometry. Angular dependent transport data was collected using the 

Quantum Design horizontal rotator option. Heat capacity measurements were performed under T = 3 K 

using a Quantum Design dilution refrigerator.  

Electronic and band structure calculations were performed on LaCuSb2 by means of DFT with the local 

density approximation (LDA), using the Elk all-electron full-potential linearized augmented-plane wave 

plus local orbitals (FP-LAPW+LO) code43. Calculations were performed both with and without SOC using 

an 8 × 8 × 8 k-point mesh. 

ARPES spectra were recorded on the UE112-PGM2a beamline at Bessy II in Berlin, Germany. The utilized 

12 endstation is equipped with a Scienta R8000 detector. Samples were cleaved in-situ in ultra-high vacuum 

(low 10-10 mbar pressure range) and measured at a temperature of 40 K. 

Measurements of SdH oscillations were performed on a single-crystal structure prepared using focused ion 

beam lithography. Four-point resistance measurements of the c-axis resistivity were made using an 

excitation current of 150 μA, with magnetic fields up to 12 T applied along the c-axis, at temperatures 

between T = 0.27 and 30 K.  

Acknowledgments 

This work was supported as part of the Institute for Quantum Matter, an Energy Frontier Research Center 
funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award 

DE-SC0019331. L. M. S. was supported by NSF through the Princeton Center for Complex Materials, a 

Materials Research Science and Engineering Center DMR-1420541, and by a MURI grant on Topological 

Insulators from the Army Research Office, grant number ARO W911NF-12-1-0461. A. T. was supported 
by the DFG; proposal no. SCHO 1730/1-1. Y. F. and B. J. R. are supported by the National Science 

Foundation under Grant No. 1752784. We thank HZB for the allocation of synchrotron radiation beamtime. 

 

Supplemental Materials 



6 

 

See the supplementary materials for a more in-depth discussion of the ARPES findings and a discussion of 

other possible sources of linear magnetoresistance in this material. 
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Figure 1. A. The tetragonal crystal structure of LaCuSb2, showing the CuSb4 layer and the Sb square-lattice 

layer. B. The first Brillouin zone for a primitive tetragonal cell, with special positions highlighted. C and 

D show the electronic band structure for LaCuSb2 with and without spin orbit coupling, respectively. Linear 
bands can be observed especially along X-M and M-Γ, with bandwidths on the other of ~1 eV.  
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Figure 2. A. The experimentally observed Fermi surface measured at hν = 80 eV, demonstrating a diamond-

like shape around the Γ̅ point. B. The calculated Fermi surface, which agrees with the experimental one in 
A. Internal features are very weak in the first Brillouin zone but are observed in the experimental second 

Brillouin zone, possibly due to various matrix element effects. C. The experimentally observed band 

structure for the Γ̅-X̅-M̅-Γ̅ path along the Brillouin zone. D. The calculated band structure for the same path 

as in C. Deviations observed in the experimental data are likely due to the presence of a small kz dispersion 
component. See SI for comparison. 

 

 

 
 

 

 
 

 

 

 
 

 



10 

 

 
Figure 3. A. The resistivity as a function of temperature indicates metallic behavior, and generally increases 

upon applying magnetic fields at all temperatures. The RRR of 8.5 indicates the sample is of high quality. 

B. The magnetoresistance of LaCuSb2 increases dramatically up to around ~2 T at the lowest measured 

temperature of T = 3 K, after which the dependence becomes linear with applied field. The region of 
linearity decreases with increasing temperature, but is somewhat regained at all fields past 200 K. The 

dramatic increase in magnetoresistance at low fields and low temperatures is due to the presence of weak 

antilocalization in this system. C. Measurements of the Hall effect in LaCuSb2 suggest electrons to be the 
main carriers in this system. The non-linearity of the curve is due to issues with data collection and 

symmetrization. D.  The phase coherence length of carriers in LaCuSb2, as extracted by fitting the low-field 

magnetoresistance curves of LaCuSb2 to the HLN theory for weak antilocalization. The T -0.58(4) power law 

dependence of 𝐿𝜑 with temperature indicates that the weak antilocalization is two-dimensional.  
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Figure 4. A. Oscillation amplitude as a function of inverse field at T = 0.27 K for LaCuSb2 demonstrates 

large oscillations at high fields. B. A scanning electron microscopic image of the focused-ion beam cut 
device of LaCuSb2 used for SdH oscillations measurements. C. Plot showing the Fast Fourier Transform 

(FFT) of the SdH oscillations at eight different temperatures. While several frequency amplitudes are 

observed, a frequency peak at 49.6 T is observed at all temperatures. D. The evolution of the 49.6 T 
frequency peak, shown in C, with temperature. A fit to Lifshitz-Kosevich theory yields an effective mass 

of 6.5% the electron rest mass. 
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ARPES Interpretation 

ARPES measures only a narrow range of kz values for a given photon energy. Figure S1, therefore, aims 

to determine the influence of a possible kz dispersion on the measured data. Figure S1a shows the 

experimental dispersion along the path described in the main text, and Figure S1b and S1c show the DFT 

band structures, with SOC included, along the corresponding paths for kz = 0 and kz = π, respectively. In the 

experimental data, intensity ranges were chosen independently for the path segments to ensure maximum 

visibility of the band structure. Along Γ-X, several parallel bands dispersing to lower initial state energies 

can be observed. For better visibility, a pair of arrows indicates one such pair of bands which is crossing 

the Fermi level, but shows rather weak intensity. These bands have no direct correspondence along the Z-

R direction, but are clearly represented in the Γ-X DFT data of Figure S1b, certifying our choice of the kz 

= 0 plane in the main paper. The X-M direction also catches the dispersion of the experimental bands along 

X-M, where they disperse parabolically towards M. However, one must note that the energy gap between 

the first and second pair of bands along X-M is slightly too large to match the ARPES data perfectly. Since 

the ARPES data, for a photon energy of 80 eV, were not recorded perfectly on the high-symmetry plane kz 

= 0, this deviation can be explained by the kz dispersion. The R-A direction in Figure S1c, for example, 

matches the small energy gap much better. This does not mean that the ARPES data follows the kz = π plane 

here, but instead suggests that its influence is strong in this part of the band structure when slightly off the 

BZ center. 

 

 

 

mailto:*mcqueen@jhu.edu


 

 

 

 

 

 

 

Figure S1. A. The experimentally observed band structure for the Γ̅-X̅-M̅-Γ̅ path along the Brillouin zone. 

B. The calculated band structure for the kz = 0 plane. C. The calculated band structure for the kz = π plane. 

While the kz = 0 case matches the data well, there are some contributions of the kz = π plane close to the M̅ 

point. 

 

Two-Band Model Fit to Magnetoresistance 

The two-band model can be used to describe the magnetoresistance of a material with significant 

contributions from two different bands [1], and offers a possible alternative interpretation of the 

magnetoresistance of LaCuSb2. The transverse resistivity 𝜌𝑥𝑥  can be described by: 

𝜌(𝐻) =
(𝜎𝑏1 + 𝜎𝑏2) + 𝜎𝑏1𝜎𝑏2(𝜎𝑏1𝑅𝑏1

2 + 𝜎𝑏2𝑅𝑏2
2 )𝐻2

(𝜎𝑏1 + 𝜎𝑏2)2 + 𝜎𝑏1
2 𝜎𝑏2

2 (𝑅𝑏1 + 𝑅𝑏2)2𝐻2
= 𝜌0 +

𝛼𝐻2

1 + 𝛽𝐻2
 

Where 𝜌0 is the zero-field resistivity, 𝜎𝑏1(𝜎𝑏2) is the conductivity of carriers that occupy band 1 (band 2), 

𝑅𝑏1 (𝑅𝑏2) is the Hall coefficient for band 1 (band 2) carriers, and 𝛼 and 𝛽 are parameters defined as: 

𝛼 =
(𝜎𝑏1 + 𝜎𝑏2)𝜎𝑏1𝜎𝑏2(𝜎𝑏1𝑅𝑏1

2 + 𝜎𝑏2𝑅𝑏2
2 ) − 𝜎𝑏1

2 𝜎𝑏2
2 (𝑅𝑏1 + 𝑅𝑏2)2

(𝜎𝑏1 + 𝜎𝑏2)3
 

𝛽 =
𝜎𝑏1

2 𝜎𝑏2
2 (𝑅𝑏1 + 𝑅𝑏2)2

(𝜎𝑏1 + 𝜎𝑏2)2
 

A fit of this model to the magnetoresistance data of LaCuSb2 at T = 3 K is shown below:  



 

The simple two-band model does not account for the linearity in the magnetoresistance at fields above 2 T. 

Explicitly including a linear term in the model, however, improves the quality of the fit to the data, as shown 

below.  

 



We therefore cannot rule out a two-band model explanation for the magnetoresistance if a linear term, such 

as is known to arise from Dirac Fermions or density fluctuations [2], is explicitly included. 

References 

[1] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders PA (1976). 

[2] T. Kouri, et. al., Phys. Rev. Lett. 117, 25601 (2016). 

 


