Collaborative Research Centre “Nanoscale Metals” raises 11 million euros

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben.

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben. © Felix Stete

Several HZB research teams are participating in the new SFB 1636 "Elementary processes of light-driven reactions on nanoscale metals".

Research on Nansoscale Metals

“We are excited and look forward to the new synergies that can arise from this,” says Prof. Matias Bargheer, who is one of the spokespersons for the new Collaborative Research Centre, led by University of Potsdam. The HZB scientists Renske van der Veen, Yan Lu and Alexander Föhlisch are also involved, in addition to the team of Bargheer, who heads a joint research group at the University of Potsdam and HZB.

The research project aims to help understand the elementary processes that trigger light-controlled chemical reactions on metals at the nanoscale. “There are still many unanswered questions at this fascinating transition between physics and chemistry and we can already apply our concepts to organic coupling reactions and polymerisations, e.g. to functionalise nanoparticles asymmetrically,” says Prof. Dr. Matias Bargheer, talking about the struggles as well as the perspectives of their collaborative research.

Antonia Rötger

  • Copy link

You might also be interested in

  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
  • Green hydrogen from direct seawater electrolysis- experts warn against hype
    News
    29.07.2024
    Green hydrogen from direct seawater electrolysis- experts warn against hype
    At first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.
  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.