“Workhorse” of silicon photovoltaics combined with perovskite in tandem for the first time

A standard silicon solar cell is combined with a perovskite top cell. This tandem solar cell could reach high efficiencies.

A standard silicon solar cell is combined with a perovskite top cell. This tandem solar cell could reach high efficiencies. © Silvia Mariotti / HZB

Cross-sectional schematics of the perovskite−POLO−PERC tandem solar cell.

Cross-sectional schematics of the perovskite−POLO−PERC tandem solar cell. © HZB

In the HySPRINT laboratory at HZB, the perovskite experts are constantly working on new improvements.

In the HySPRINT laboratory at HZB, the perovskite experts are constantly working on new improvements. © Michael Setzpfand/HZB

So-called PERC cells are used in mass production of silicon solar cells, they are considered the workhorses of photovoltaics, dominating the market. Now two teams from HZB and the Institute for Solar Energy Research in Hamelin (ISFH) have shown that such standard silicon cells are also suitable as a basis for tandem cells with perovskite top cells. Currently, the efficiency of the tandem cell is still below that of optimised PERC cells alone, but could be increased to up to 29.5% through targeted optimisation. The research was funded by the German Federal Ministry of Economics as part of a joint project.

Tandem cells made of silicon and perovskite are able to convert the broad energy spectrum of sunlight into electrical energy more efficiently than the respective single cells. Now, for the first time, two teams from HZB and ISFH Hameln have succeeded in combining a perovskite top cell with a so-called PERC/POLO silicon cell to form a tandem device. This is an important achievement, since PERC silicon cells on p-type silicon are the "workhorse" of photovoltaics, with a market share of about 50% of all solar cells produced worldwide. They are largely optimised, long-term stable and temperature stable. Therefore, it is particularly interesting for the commercialisation of a perovskite-silicon tandem technology to develop a "perovskite tandem upgrade" for PERC cells. The cooperation took place within the framework of the joint project P3T, which is funded by the Federal Ministry of Economics and coordinated by HZB.

The team at ISFH used an industry-compatible PERC process for the backside contact of the silicon bottom cells. On the front side of the wafer, another industrialisable technology was used, the so-called POLO contact, which was adapted here for the small-area proof of concept cells.

Perovskite expertise at HZB

The following process steps took place at HZB: A tin-doped indium oxide recombination layer was applied as a contact between the two subcells. On top of this, a perovskite cell was processed with a layer sequence similar to that in the current world record tandem cell on n-type silicon heterojunction cells, made by HZB. The first perovskite PERC/POLO tandem cells produced in this way achieve an efficiency of 21.3% on an active cell area of about 1 cm². This efficiency is thus still below the efficiency of optimised PERC cells in this feasibility study. "However, initial experimental results and optical simulations indicate that we can significantly improve the performance through process and layer optimisation," explains Dr. Lars Korte, the corresponding author of the study.

PCE estimated at 29,5 %

The experts estimate the Power Conversion Efficiency (PCE) of these perovskite/silicon tandem solar cells with PERC-like sub-cell technology at 29.5 %. The next steps for further efficiency increases are already clear: Dr. Silvia Mariotti from the HZB team had identified the coverage of the silicon surface by the perovskite as potential for improvement: "For this purpose, one could adapt the surface of the silicon wafers and thus quickly increase the efficiency to about 25%," says Mariotti. This is then already significantly higher than the efficiency of PERC single cells.

arö

  • Copy link

You might also be interested in

  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
  • Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Science Highlight
    31.07.2024
    Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.
  • Green hydrogen from direct seawater electrolysis- experts warn against hype
    News
    29.07.2024
    Green hydrogen from direct seawater electrolysis- experts warn against hype
    At first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.