Neutronentomographie: Einblick ins Innere von Zähnen, Wurzelballen, Batterien und Brennstoffzellen

Auch Fossilien wie dieser 250 Mio. Jahre alte Lystrosaurus-Schädel lassen sich mit Neutronentomographie zerstörungsfrei untersuchen.

Auch Fossilien wie dieser 250 Mio. Jahre alte Lystrosaurus-Schädel lassen sich mit Neutronentomographie zerstörungsfrei untersuchen. © MfN Berlin

Neutronentomographie zeigt, wie sich nach Torsion (links) oder Zugspannung (rechts) verschiedene Kristallphasen im Material verteilen.

Neutronentomographie zeigt, wie sich nach Torsion (links) oder Zugspannung (rechts) verschiedene Kristallphasen im Material verteilen. © HZB/Wiley VCH

Zeitaufgel&ouml;ste Tomographie einer Lupinenwurzel (gelbgr&uuml;n), nachdem deuteriertes Wasser (D<sub>2</sub>O) von unten zugegeben wurde. Der Zeitverlauf zeigt, wie das Wasser (H<sub>2</sub>O, dunkelblau) durch das D<sub>2</sub>O von unten verdr&auml;ngt wird. &copy;Christian T&ouml;tzke/ University of Potsdam

Zeitaufgelöste Tomographie einer Lupinenwurzel (gelbgrün), nachdem deuteriertes Wasser (D2O) von unten zugegeben wurde. Der Zeitverlauf zeigt, wie das Wasser (H2O, dunkelblau) durch das D2O von unten verdrängt wird. ©Christian Tötzke/ University of Potsdam

Einen umfassenden Überblicksbeitrag über bildgebende Verfahren mit Neutronen hat ein Team am Helmholtz-Zentrum Berlin (HZB) und der Europäischen Spallationsquelle ESS im renommierten Fachjournal Materials Today (Impaktfaktor 21,6) publiziert.  Die Autoren berichten über die neuesten Entwicklungen in der Neutronentomographie. An Beispielen zeigen sie die Einsatzmöglichkeiten dieser zerstörungsfreien Methode auf. Neutronentomographien haben Durchbrüche in der Zahnmedizin, Kunstgeschichte, Pflanzenphysiologie, Paläobiologie, Batterieforschung oder Werkstoffanalyse ermöglicht.

Neutronen dringen tief ins Innere der Probe ein, ohne sie dabei zu zerstören. Darüber hinaus unterscheiden Neutronen auch leichte Elemente wie Wasserstoff, Lithium oder Wasserstoff-haltige Substanzen voneinander. Weil sie selbst ein magnetisches Moment besitzen, reagieren sie auf kleinste magnetische Strukturen im Materialinnern. Dies macht Neutronen zu einem vielseitigen und mächtigen Werkzeug für die Materialforschung. Aus der Absorption der Neutronen in der Probe lassen sich 2D- oder 3D-Abbildungen errechnen, sogenannte Neutronentomographien. An der Neutronenquelle des HZB, dem BER II, arbeitet ein weltweit renommiertes Team um Dr. Nikolay Kardjilov und Dr. Ingo Manke daran, die Methoden der Neutronentomographien stetig zu erweitern und zu verbessern.

In ihrem Übersichtsbeitrag beschreiben die Autoren die neuesten Verbesserungen in der Neutronenbildgebung und stellen herausragende Anwendungen vor. Verbesserungen in den letzten Jahren haben die räumliche Auflösung bis in den Mikrometerbereich gesteigert. Das ist mehr als zehnmal genauer als medizinische Röntgentomographien. Auch sind nun raschere Aufnahmen möglich, was es auch erlaubt, Prozesse in Materialien zu beobachten: Ein Beispiel sind  die „in operando“-Messungen einer Brennstoffzelle im laufenden Betrieb, die zeigen, wie genau sich Wasser in der Brennstoffzelle verteilt. Dies liefert wichtige Hinweise für das optimale Design der Zelle.

Die Einsatzmöglichkeiten reichen von der Beobachtung des Lithium-Ionentransports in Batterien und Festigkeitsanalysen von Industriekomponenten über Untersuchungen an Zähnen oder Knochen oder dem Wurzelwerk von Pflanzen bis hin zur zerstörungsfreien Analyse von historischen Objekten wie alten Schwertern und Ritterrüstungen, um Hinweise auf Fertigungsmethoden früherer Zeiten zu erhalten.

“Die Neutronentomographie ist extrem vielseitig nutzbar. Wir arbeiten daran, weitere Verbesserungen zu erreichen, und hoffen, dass diese stark nachgefragte Methode künftig auch an modernen Spallationsquellen zur Verfügung steht“, sagt Nikolay Kardjilov.


Zur Publikation: Materials Today 2018: “Advances in neutron imaging”, Nikolay Kardjilov, Ingo Manke, Robin Woracek, André Hilger, John Banhart

DOI: 10.1016/j.mattod.2018.03.001


Lesetipp: Über die Forschung an Schwertern und Ritterhelmen berichten wir im Campusblog

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.
  • Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Science Highlight
    03.09.2024
    Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Ein Team aus führenden Expertinnen und Experten aus Medizinphysik, Physik und Strahlentherapie, zu dem auch die HZB-Physikerin Prof. Andrea Denker und der Charité-Medizinphysiker Dr. Jens Heufelder gehören, hat einen Übersichtsartikel zur Protonentherapie von Augentumoren veröffentlicht. Der Beitrag ist im Red Journal, einem der renommiertesten Fachjournale in diesem Bereich erschienen. Er stellt die Besonderheiten dieser Therapieform am Auge vor, erläutert den Stand der Technik und aktuelle Forschungsschwerpunkte, gibt Empfehlungen zur Durchführung der Bestrahlungen und einen Ausblick auf künftige Entwicklungen.
  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.