7.4 million euros from the EFRE fund: HZB is setting up a new application laboratory for developing superconducting accelerator components

The application laboratory “SupraLab@HZB” is funded by the EFRE Fonds.

The application laboratory “SupraLab@HZB” is funded by the EFRE Fonds.

A complex infrastructure will be set up at the SupraLab@HZB for testing the superconducting cavities and developing entire installable modules.

A complex infrastructure will be set up at the SupraLab@HZB for testing the superconducting cavities and developing entire installable modules.

Helmholtz-Zentrum Berlin is receiving 7.4 million euros from the European Regional Development Fund (EFRE). The money is being used to set up the application laboratory “SupraLab@HZB” for the advancement of high-current superconducting cavities. These components will be needed for operating the next generation of novel, high-performance light sources. The laboratory will also provide complex superconducting component test beds for use by companies and research institutes in the region.

“We are very grateful for the funding from EFRE, and thank in particular the State of Berlin for supporting our application. With SupraLab@HZB, we will achieve a milestone in the development of pioneering accelerator technology. The creation of this application laboratory will generate know-how for future accelerators and novel lightsources. The development of this key technology also presents attractive economic opportunities for the research and industrial landscape of Berlin,” says Prof. Dr. Anke Kaysser-Pyzalla, scientific director of HZB.   

To set up the new application laboratory, HZB is applying its internationally renowned expertise in the development of continuous wave (CW) superconducting accelerator components. “The advantage of these CW superconducting cavities is that they permanently apply a very high accelerator field and at the same time provide the freedom to optimise the geometry for high-current mode. So not only do they accelerate a high electron current; they also offer a practically freely selectable time structure (pulse sequence) of the current. Thanks to the EFRE funding, we now have the opportunity to develop this technology a great deal further until it is ready for application in light sources,” says Prof. Dr. Jens Knobloch, head of the HZB institute “SRF – Science and Technology” (ISRF), which has assumed the scientific direction of the SupraLab.

The HZB researchers aim to use this technology as part of the upgrade of BESSY II into a variable pulse length storage ring, BESSY VSR. For the first time, high-current superconducting cavities will be used to produce long and short pulses (in the picosecond range) of high-brilliancy light simultaneously in the one storage ring. Flexibly selectable pulse lengths will go a long way to resolving many unanswered questions in research. They will allow materials for energy conversion, for example, or future energy-efficient data storage (spintronics) to be studied more thoroughly and developed further than ever before.

For the SupraLab@HZB, the researchers want to develop and qualify not only cavities but also entire installable modules. Developing these superconducting modules, however, will require enormous technical effort. Accordingly, a complex infrastructure will be set up at the SupraLab@HZB for testing the cavities and systems. Plans include investments in cryogenic systems and high-frequency emitters, among other things. Once complete, the application laboratory will promote lasting technology transfer and cooperation with regional and national companies.

The project is being funded from the European Regional Development Fund as of 1 January 2017, and will run until the end of 2019. Helmholtz-Zentrum Berlin is contributing an equal sum from its own means. Thus, a total of 14.8 million euros is available for setting up the new application laboratory SupraLab@HZB.

Clips about BESSY VSR

- about the project

- about the principle and the problem of BESSY VSR

Website BESSY VSR

(sz)


You might also be interested in

  • Sebastian Keckert wins Young Scientist Award for Accelerator Physics
    News
    21.03.2024
    Sebastian Keckert wins Young Scientist Award for Accelerator Physics
    Dr Sebastian Keckert has been awarded the Young Scientist Award for Accelerator Physics of the German Physical Society (DPG). The prize is endowed with 5000 euros and was presented to him on 21.03. during the spring conference in Berlin. It honours the physicist's outstanding achievements in the development of new superconducting thin-film material systems for cavities.

  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.