Wie Kreisel auf atomarer Ebene miteinander wechselwirken

Prof. A. F&ouml;hlisch und Dr. E. Suljoti bei der Arbeit an der<br>Undulatorbeamline UE52-PGM bei BESSY II.

Prof. A. Föhlisch und Dr. E. Suljoti bei der Arbeit an der
Undulatorbeamline UE52-PGM bei BESSY II.

Die Wechselwirkungen zwischen Elektronen und dem Atomgerüst in einem Festkörper sind die Grundlage von Materialeigenschaften, die eine zunehmend wichtige technologische Rolle spielen. Dazu gehört zum Beispiel das schnelle Schalten magnetischer Medien, wie es etwa für die Speicherung von Daten auf Computerfestplatten erforderlich ist.  Diesen Vorgang untersuchen und optimieren Wissenschaftler derzeit im Labor anhand der ultraschnellen Demagnetisierung von ferromagnetischen Schichtsystemen. Um solche Materialsysteme weiter optimieren zu können, müssen Wissenschaftler die Wechselwirkung zwischen Elektronen und Atomgitter detailliert verstehen. Forscher die am Helmholtz-Zentrum Berlin (HZB) und der Universität Hamburg tätig sind, haben nun einen wichtigen Teilprozess der Wechselwirkung der Elektronen mit den so genannten Phononen, den Quasiteilchen der atomaren Gitterschwingung, aufgeklärt. Dabei konnten sie zeigen, wie und vor allem mit welcher Effizienz Elektronen eine ihrer fundamentalsten Eigenschaften, den so genannten Drehimpuls, mit den Phononen austauschen können. Ihre Ergebnisse hat das Team um Professor Alexander Föhlisch, Leiter des HZB-Instituts für „Methoden und Instrumentierung der Synchrotronstrahlung“, und Professor Wilfried Wurth von der Universität Hamburg jetzt in der Fachzeitschrift „Physical Review Letters“ publiziert. Den Nachweis und die Quantifizierung dieses Effekts führten das Team an einem klassischen Modellsystem durch, dessen physikalische Eigenschaften sehr genau bekannt sind: Silizium. An der Synchrotronstrahlungsquelle BESSY II des HZB bestrahlten sie Siliziumkristalle mit Röntgenstrahlung und maßen dann hochpräzise die Energie der an der Probe gestreuten Lichtteilchen, der Photonen. Die Analyse der Ergebnisse dieser auch als resonante inelastische Röntgenstreuung bezeichneten Methode erlaubte es nun, die Wahrscheinlichkeit eines sogenannten Drehimpulstransfers zwischen Phonon und Elektron genau zu bestimmen. Der Effekt ist klein - in Silizium etwa 50 Mal kleiner als die bekannte dominierende klassische Elektronen-Phononen Wechselwirkung, bei der kein Drehimpuls übertragen werden kann –, weil die Phononen nur in seltenen ausgewählten Situationen zu einem Drehimpulsübertrag in der Lage sind. Die zur genauen Vermessung notwendige Sensitivität erreichten die Wissenschaftler durch die Kopplung der „Hamburg Inelastic X-ray scattering station“ (HIXSS) mit der hochbrillanten Synchrotronstrahlung des Speicherrings BESSY II. „Das Resultat unserer Messung ist ein wichtiger Baustein auf dem Weg zu einem besseren Verständnis der komplizierten Kopplungen zwischen Atomgitter und den drei wichtigen Eigenschaften der Elektronen – dem Spin, dem Bahndrehimpuls und der Ladung“, sagt Alexander Föhlisch: „Technologisch bedeutsame Materialeigenschaften wie schnelle Magnetisierungsprozesse können wir somit besser erklären.“ Um diese Untersuchungen zukünftig in idealer Weise am Helmholtz-Zentrum Berlin zu ermöglichen, befindet sich der neue RICXS Messplatz am Speicherring BESSY II im Aufbau. Zukünftig wird dort resonante inelastische Röntgenstreuung hoher Energie und Impulsauflösung bei höchster Transmission durchgeführt werden. Mehr dazu in der Originalveroeffentlichung: M. Beye, F. Hennies, M. Deppe, E. Suljoti, M. Nagasono, W. Wurth, A. Foehlisch, Dynamics of Electron-Phonon Scattering: Crystal- and Angular-Momentum Transfer Probed by Resonant Inelastic X-Ray Scattering, Phys. Rev. Lett. 103 (2009), 237401.

HS


Das könnte Sie auch interessieren

  • Sebastian Keckert gewinnt Nachwuchspreis für Beschleunigerphysik
    Nachricht
    21.03.2024
    Sebastian Keckert gewinnt Nachwuchspreis für Beschleunigerphysik
    Dr. Sebastian Keckert wird mit dem Nachwuchspreis für Beschleunigerphysik der Deutschen Physikalischen Gesellschaft (DPG) ausgezeichnet. Der Preis ist mit 5000 Euro dotiert und wurde ihm am 21.03. während der Frühjahrstagung in Berlin feierlich verliehen. Er würdigt die herausragenden Leistungen des Physikers bei der Entwicklung neuer supraleitender Dünnschicht-Materialsysteme für Hohlraumresonatoren.

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.