

Christiane Stephan, Susan Schorr, Christian A. Kaufmann, Hans-Werner Schock Helmholtz-Zentrum Berlin für Materialien und Energie

defects!

The role of gallium addition on the defect characteristics in off stoichiometric CulnSe₂

The role of stoichiometry in chalcopyrite type absorbers

Motivation

 high efficient thin film solar cells exhibit in general an off stoichiometric composition deviation from stoichiometry always

- causes structural inhomogeneities and charge mismatches, which influence the properties of a material
- electronic, optical and theoretical defect characterisation has to be supplemented by structural studies

Fundamental and systematic structural studies are necessary to understand the off stoichiometry phenomena in chalcopyrites!

- for CuGaSe₂ than for CuInSe₂^[1]

Strategy

- synthesis of powder samples with defined composition by solid state reaction of the pure elements in sealed and evacuated silcia tubes (T = 850°C)
- pre-characterisation by XRD and electron microprobe analysis, including wavelength dispersive X-ray (WDX) analysis on polished samples

10^{19} p-type n-type p-type 10 ¹⁹ 0 10 ¹⁸ 10 ¹⁸ 10 ¹⁷ 0.65 0.70 0.75 0.80 0.85 0.90 (Cu/ln	ype p-type p	eutral defect duces of isolated order of The repression of B _{Cu} defect may supress the formation of the CuB ₃ Se ₅ vacancy phase and explains the broader homogeneity region for Ga-substituted CuInSe ₂ !	 according to WDX analysis and neutron diffraction. ordered structure with V_{Cu} and Ga_i maximum amount of 4% site fraction Ga_{Cu}/Cu_{Ga} (10²⁰/cm³) clustering of point defects to neutral defect complexes cannot be assumed 		
Compound	Defects	Summary			
CuInSe ₂	V _{Cu} In _{Cu} Cu _{In}	 successful determination of cationic point defect concentration in off stoid 	sful determination of cationic point defect concentration in off stoichiometric CuInSe ₂ , CuGaSe ₂ and Cu(In _x Ga _{1-x})Se ₂ ssion of B _{Cu} defect in Cu-poor CuGaSe ₂ and Cu(In _x Ga _{1-x})Se ₂ may supress the formation of the CuGa ₃ Se ₅ vacancy phase and thus		
CuGaSe ₂	V _{Cu} Ga _i	repression of B _{Cu} defect in Cu-poor CuGaSe ₂ and Cu(In _x Ga _{1-x})Se ₂ may support of a Cu			
Cu(In _x Ga _{1-x})Se ₂	V _{Cu} B _i	supports the chemical homogeneity of a Cu(In _{1-x} Ga _x)se ₂ absorber layer			