

European Workshop on Photocathodes for particle Accelerator Applications/EWPAA2017

Berlin, 21 September 2017

THE SEMICONDUCTOR PHOTOCATHODE FOR THE KEK SRF-GUN

OUTLINE

2

- 1. CONCEPTS OF THE KEK SRF GUN
- 2. PHOTOCATHODE PROPERTIES
- 3. CAVITY DESIGN AND VERTICAL TESTS
 - 1. DUMMY CATHODE PLUG
 - 2. CATHODE PLUG
- 4. PLAN OF THE KEK SRF GUN #2
- 5. SUMMARY

CONCEPT OF THE KEK SRF GUN

- KEK started SRF gun development from 2013 for future linac base accelerator. ٠
- Feature of the KEK SRF gun is back side excitation type.
- Merits of the back side excitation: ٠
 - Simple beam line structure. ٠
 - Laser control could be more precisely because of the short focal length. ٠
- Difficulty of the back side excitation photocathode development ٠
 - Photocathode, transparent substrate and cathode plug need to withstand RF high voltage.

CONCEPT OF THE KEK PHOTOCATHODE

- There are 4 layers in the photocathode.
 - 1. Photocathode surface is K_2CsSb .
 - 2. The transparent superconductor $LiTi_2O_4$ can block the RF leakage and transmit the excitation laser.
 - 3. $MgAl_2O_4$ is the substrate for epitaxial growth of $LiTi_2O_4$.
 - 4. AR coating is a option for increasing laser efficiency.
 - The photocathode performances were evaluated before by quantum efficiency, initial emittance and critical DC magnetic field.

Photocathode substrate (LiTi₂O₄/ MgAl₂O₄)

PROPERTY OF THE PHOTOCATHODE SUBSTRATE

- Transition temperature is $11 \sim 13$ K.
- Transmittance is 75 % at 530 nm.
 - Gap between transmittance and reflectance is absorption. Absorption is about 10 %.
 - There is not big difference between $LiTi_2O_4$ film thickness 70 nm and 90 nm.
 - The film thickness of LTO will be changed by prioritizing RF penetration depth.

PREVIOUS PHOTOCATHODE EVALUATION CHAMBERS

 \bigcirc

- Now these chambers are disassembled to assemble KEK SRF gun #2.
- **Quantum efficiency**: QE was measured at deposition chamber. Xenon lamp were used to measure QE spectrum. Excitation light can be inject from back and front. Transmittance can be measured.
- Initial emittance: The photocathode can be cooled down to 6.7 K.
- Critical magnetic field: The photocathode was taken out from chamber and measured by SQUID MPMS7 (Quantum Design, Inc.)

PHOTOCATHODE DEPOSITION CONDITION

- The photocathode deposition chamber has cesium (SAES), potassium (SAES) and bulk antimony evaporation sources.
- Laser and xenon lamp can inject from front and back side of the photocathode.
- Base pressure is 1x10⁻⁸ Pa.
- The chamber vacuum is $6x10^{-8} \sim 1x10^{-7}$ Pa during the deposition.

Procedure	Condition
Heat cleaning	~500 °C \times 3 hours
Sb deposition	150°C, Thickness 10nm (Transmittance decrease 20-30%)
K deposition	~120 °C, QE peak
Cs deposition	100 °C, QE peak

QUANTUM EFFICIENCY

- The threshold energy is 1.85 ± 0.15 eV. This is same value as other studies. $\Rightarrow K_2$ CsSb deposition on the transparent superconductor was successful.
- The ratio of back and front side QE can't be explain by the transmittance of LTO.
 ⇒ We suspect Sb rich layer exists on the boundary.
- But It is not a problem for gun operation because we will use 532nm laser.
 - At 532nm, back side QE is 90% of the front side.

QE DEGRADATION AT LOW TEMPERATURE

- We transferred the photocathode to initial emittance measurement chamber which has a LHe small cryostat.
- QE was decreased during cooling.
 - We suspect residual gas was absorbed on the photocathode surface and increase the surface work function.
- Further study of photocathode performance at cryogenic temperatures and ways to improve this performance is essential for the photocathode development.

Initial emittance

- Initial emittance was calculated by measuring the expansion of beam size.
- Parallel plate DC gun consists of thin anode mesh and cathode block.
- Laser was inject from backside of the photocathode. laser spot side is $\Phi \sim 0.1$ mm

Initial emittance measurement scheme and equation

Gap voltage (kV) $\frac{\varepsilon_n}{\sigma_x} = \frac{1}{2g+d} \cdot \sqrt{\frac{2eV}{mc^2}} \cdot \langle r^2 - \sigma_x^2 \rangle^{1/2}$ Laser radius Beam radíus 10

Initial emittance

- The measurement results at RT almost agree with theory.
- Initial emittance should be constant regardless of the electric field
 - The measured data is rising along with electric field.
 - We suspect anode was bended with electric field, because it is $20 \ \mu m$ thin film.

Initial emittance

- The measurement results at RT almost agree with theory.
- Initial emittance should be constant regardless of the electric field
 - The measured data is rising along with electric field.
 - We suspect anode was bended along with electric field, because it is $20 \ \mu m$ thin film.

SUPERCONDUCTING PROPERTY OF THE PHOTOCATHODE

- The critical temperature and critical magnetic field were not changed before and after K_2CsSb deposition.
- Critical magnetic field is higher than the SRF gun operation.

KEK SRF GUN #1

- KEK SRF gun #1 was designed to check basic RF parameters (maximum Esp, Qo).
 - 3 GeV KEK- ERL was selected as the target parameters.
- Slope of the cavity was designed to compensate the space charge effect.

Cathode plug

Parameter	Value			
Beam energy	2 MeV			
Bunch Charge	77 pC			
Bunch length	3 ps			
Projected emittance	0.6π mm.mrad			
Projected energy spread	0.09%(1.84 keV)			
Peak electric field	41.9 MV/m			
Peak magnetic field	95.2 mT			
RF phase	55°			
Geometrical Factor	135.6 Ω (TESLA 270 Ω)			
Target surface resistance	$30 n\Omega$ (ILC target)			
Target Q value	4.5×10^{9}			
Target cavity loss	8 W			

- 120

VERTICAL TESTS WITH DUMMY CATHODE PLUG

- The cathode plug cleaning is important to achieve high gradient
 - After HPR, the peak surface electric field reached 75 MV/m and X-ray couldn't be observed.
 - However HPR should not apply to the transparent superconductor because it is very thin and delicate.
 - We have to search other method for cleaning for example hydrogen cleaning or sputtering

VERTICAL TESTS WITH CATHODE PLUG ASSEMBLY

- In order to test various photocathode substrate materials, new cathode rod which can mount 5mm square sample was fabricated.
- Q value of full rod was quite low. VT with rod pipe was almost same as the dummy rod.
 - We suspected RF loss at inner components (middle path).
 - RF passing through outer is reflected by choke and Q value of rod pipe.
 - Coupling of antenna was adjusted about 1E+11 at room temperature.
- We will use indium seal to protect RF leakage and enforce thermal contact. It might become a contamination source.

PLAN OF KEK SRF GUN #2

17

FY2017 (until 2018 March)

• Fabricate gun cavity with helium jacket and K_2CsSb photocathode deposition chamber individuality. After FY2018

• Install cavity and cathode chamber to horizontal cryostat test area at KEK-ARE2

Horizontal Cryostat

KEK SRF GUN #2 DESIGN

- He vessel is connected by flange with indium seal
 - because #2 cavity is out of high pressure gas safety law.
- He vessel material is stainless steal.
- Vessel was designed compatible with ILC as possible.

- Photocathode will cool down about 2K
- Width between cavity and cryomodule should be narrowed to ensure the transfer rod space.

THERMAL STRUCTURE

THERMAL CONDUCTIVITY OF THE CATHODE PLUG

- Photocathode will cool down about 2K.
- Main material is copper. Surface is covered with Nb (HIP)
- Thermal contact will be measured by test chamber.

$$\mathbf{Q} = \frac{\Delta T}{R} \quad \begin{array}{l} \text{Heat flow: } \mathbf{Q}[\mathsf{W}] \\ \text{Thermal resistance: } \mathbf{R}[\mathsf{K}/\mathsf{W}] \\ \text{Temperature gradient: } \Delta \mathsf{T}[\mathsf{K}] \end{array}$$

in vacuum: Rcx10⁻⁴(m²K/W)

100 kN/m²	10,000 kN/m²
6-25	0.7-4.0
1-10	0.1-0.5
1.5-3.5	0.2-0.4
1.5-5.0	0.2-0.4
	100 kN/m² 6-25 1-10 1.5-3.5 1.5-5.0

	Wire	Outer	Free			Maximum	Maximum
Catalog #	dia.[mm]	dia.[mm]	length[mm]	# of turn	Spring constant[iv/mm]	load[N]	deflection[mm]
TB-3035			35	4.8	8.09	104.22	12.88
TB-3060	3.0	30	60	9	4.32	98.40	22.80
TB-3090			90	13	2.99	111.14	TOKIJIHOBANE CO., LI

Filled with 2K LHe

Cathode plug

Thermal pass

2

CATHODE INTRODUCING CHAMBER

• Applying the HPR to cathode plug is necessary for achieving high gradient

- How to clean the cathode plug is necessary more consideration
 - One idea is cleaning in the load lock chamber.

23

SUMMARY

- KEK SRF gun has been developed for 3GeV KEK ERL.
- Prototype #1 cavity was designed to check the RF parameters.
 - Target Esp is 42 MV/m, it correspond to Eacc = 20 MV/m of TESLA cavity.
 - After HPR, the peak surface electric field reached 75 MV/m and X-ray couldn't be observed.
 - We have to search other method for cleaning because $LiTi_2O_4$ is thin and delicate.
- Basic properties of the photocathode using transparent superconductor were measured.
 - QE ratio from back side was 90% of front side at 532 nm.
 - Initial emittance almost agreed with theory.
 - Critical magnetic field satisfy the SRF gun operation.
 - QE decrease during cooling down.
 - Further study of photocathode performance at cryogenic temperatures and ways to improve this performance is essential for the photocathode development.
- SRF gun #2 design was started.
 - We will fabricate deposition chamber and gun cavity until March 2018

BACKUP

PLAN OF THE KEK SRF GUN

US-Japan collaboration Plan

- 1. Beam simulation
 - KEK: 1.3 GHz multi-cell cavity (KEK SRF gun #3)
 - #3 and #2 are different design because beam parameter is different.
 - SLAC: Quarter wave cavity
 - Both guns are designed for LCLS-II-HE. Compare both feature.
- 2. Evaluation of photocathode characteristics at low temperature.
- 3. Cathode design and cleaning for particle free operation.
- 4. Beam operation (SLAC)

Replace to SRF gun for low emittance.

- Beam simulation is main topic for collaboration.
- KEK plans to start the simulation from October.

Tor Raubenheimer,"LCLS-II-HE FEL Facility Overview", Workshop on Scientific Opportunities for Ultrafast Hard X-ray at High Rep. rate SLAC, September 26-27, 2016

