

Annealing-induced Intermixing and Passivation of the Front Contact in $Cu(In,Ga)Se_2$ Devices – A Spectroscopic View on CdS and GaO_x

Donald Valenta,¹ Hasan Arif Yetkin,² Tim Kodalle,² Jakob Bombsch,¹ Raul Garcia-Diez,¹ Claudia Hartmann,¹ Shigenori Ueda,⁴ Johannes Frisch,^{1,3} Regan G. Wilks,^{1,3} Christian A. Kaufmann,² and Marcus Bär^{1,3,5,6}

¹ Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
² PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
³ Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
⁴ NIMS Beamline Station at SPring-8, National Institute for Materials Science (NIMS), Kouto, Sayo, Hyogo, 679-5148 Japan
⁵ Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Berlin, Germany
⁶ Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Chalcopyrite Cu(In,Ga)Se₂ - CIGSe thin-film solar cells

- High efficiency thin film solar cell
- Suitable for deposition on various substrates
- Can be flexible solar cells
- Future employment in ultra-thin and tandem solar cells

Press release Solar Frontier (2019-01-17)

Further increase in efficiency of CIGSe solar cells:

- Depositing TCO at elevated temperatures to decrease optical losses
- For application in tandem devices, thermal stability of CIGSe stack is needed

Post-Deposition Annealing Treatment done on samples to simulate TCO deposition at elevated temperatures

CIGS photovoltaic cell structure. Image by Alfred Hicks/NREL

Post-Deposition Annealing Treatment (PDAT)*:

- Effectively passivates defect states in CIGSe
- Decreased recombination centers density
- Increased effective acceptor density

Post-Deposition Annealing Treatment (PDAT)*:

- Effectively passivates defect states in CIGSe
- Decreased recombination centers density
- Increased effective acceptor density

• Critical temperature 250 - $300^{\circ}C \rightarrow Deterioration of CdS/CIGSe stack$

- PDAT treatments at 300 °C induce severe degradation in all cell parameters
- GD-OES shows: PDAT-induced diffusion of Na into the TCO and Cd diffusion into the CIGSe which leads to stack degradation

<u>Thermally robust buffer/absorber</u> <u>interface required !!!</u>

Criteria for more thermally robust buffer layer* :

- Diffusion barrier
- Energy band gap $(E_g) > 3 \text{ eV}$
- Buffer layer needs to provide beneficial energy level alignment

Criteria for more thermally robust buffer layer* :

- Diffusion barrier
- Energy band gap (E_g) > 3 eV
- Buffer layer needs to provide beneficial energy level alignment

<u>Gallium oxide – Ga₂O₃</u>

Ga_2O_3 as a substitute for CdS buffer layer:

- Compatible with CIGSe
- Non-toxic, non-heavy metal compound
- Wide band gap material
- Prominent material for field effect passivation
- > Thermally and chemically stable

Xue et al. Nanoscale Research Letters (2018) 13:290

Sample Preparation

- CdS buffer layer deposited via CBD, GaO_x deposition via RF- Magnetron Sputtering
- Annealed in air (PDAT air) for 20 min at 300°C after buffer layer deposition

Photoelectron Spectroscopy (PES)

©EMIL SPring.

Photon In / Electron Out (Direct photoemission)

Inelastic Mean Free Path – IMFP calculated with Quases software*

Kinetic energy of released electrons: $E_{\kappa} = h\nu - E_{B} - \Phi$

Photoelectron Spectroscopy (PES)

Photon In / Electron Out (Direct photoemission)

Kinetic energy of released electrons: $E_{\kappa} = h\nu - E_{B} - \Phi$

Electron In / Photon Out (Inverse photoemission)

Detected photon energy: $h\nu = E_B + E_K + \Phi$

SPring. 8

OEMIL

CdS & GaO_x/CIGSe Survey Spectra

From survey spectra visible attenuation of CIGSe peaks with buffer layer deposition

OEMIL

GaO_x related samples have better coverage, but Na peak still visible in spectra

Na Diffusion Into Buffer Layer

O EMIL

<u>Na 1s</u>

- PDAT induced Na diffusion present in all samples
- Na diffuses from SLG through whole stack
- GaO_x acts as a Na barrier

Core level	Excitation energy (eV)	IMFP (nm)	Cross-section
Na 1s	1253.56	< 2	~ 100
Na 2s	5950	< 8.5	~ 0.39

Effective Thickness Calculation

Beer-Lambert law $\frac{I}{I_0} = e^{-x/IMFP}$

- Effective thickness calculated from shallow core levels signals via Beer-Lambert law
- Excitation energy hv = 6 eV, IMFP ~ 8.5 nm
- Deposited CdS buffer layers thinner than nominal thickness

CdS/CIGSe

- VBM shape changes with increasing buffer layer thickness
- PDAT shows no major effect on VBM position

CdS/CIGSe

- VBM shape changes with increasing buffer layer thickness
- PDAT shows no major effect on VBM position
- Spectral intensity above VBM visible for thickest as-deposited GaO_x layer

GaO_x/CIGSe: Spectral Intensity Above VBM

- Oxygen related near surface defect density visible in as-deposited GaO_x sample
- Surface defect density decreases upon PDAT

SPring. 8

OEMIL

Energy Level Positions

Sample	E _g (eV) UPS/IPES	Optical E _g (eV)
CdS	2.36 eV	2.42 eV*
GaO _x	4.83 eV	4.71 eV

Positions obtained by linear extrapolation of leading edge in UPS and IPES data to estimate VBM, CBM values and energy band gap (E_g)

Band Level Alignment

 CBM alignment at the CdS/CIGSe interface in alignment with achieving high efficiencies

O EMIL

SPring-8

- Increase of energetic barrier for charge carrier transport at CIGSe/GaO_x interface
- Replacement of CdS with GaO_x increases interface band gap, the energy barrier for recombination across the (defect rich) buffer/absorber interface
- GaO_x (if designed properly) could be used as passivation layer in CIGSe-based solar cells*

- Na diffusion in GaO_x less pronounced than in the CdS/CIGSe samples
- No prominent PDAT influence on VBM values except to the defect related states in GaO_x
- PDAT passivates oxygen related defects GaO_x in VBM
- Derived energy level alignment suggest the application of GaO_x as passivation layer in CIGSe based solar

THANKS FOR YOUR ATTENTION!

Interface Induced Band Bending

 $CBO = \left(E_g^{cap} - E_g^{sub}\right) + VBO \quad (2)$

SPring. 8

OEMIL