

Analysis for chemical bonds in Cu(In,Ga)(S,Se)₂ using Low-temperature XAFS

○Kosuke Beppu¹ · Seiji Yamazoe² · Takahiro Wada¹

¹Ryukoku University, ²Tokyo Metropolitan University

Compound photovoltaic device material CulnSe₂

CIS has an absorption efficiency of one-hundredth times of that of silicon.

CIS and related compound have attracted much attention as alternative materials for silicon solar cell.

 $Cu(In,Ga)(S,Se)_2$ thin-film photovoltaic device achieves 23.35% conversion efficiency.

Solar Frontier, Press released, 2019.1.17, http://www.solar-frontier.com/jpn/news/2019/0117_press.html N. Motoshi et al., IEEE J. Photovoltaics 9 (6), 1863 (2019).

- CuInSe₂ (CIS) has chalcopyrite-type structure.
- The chalcopyrite-type structure has two kinds of chemical bonds, Cu-Se and In-Se.

Fabrication method of Cu(In,Ga)(S,Se)₂ films

Selenization and sulfurization process

Fabrication method of Cu(In,Ga)(S,Se)₂ films

Selenization and sulfurization process

T. Kato, Jpn. J. Appl, Appl. Phys., 56, 04CA02 (2017). T. Maeda *et al.*, Jpn. J. Appl, Appl. Phys., 59, SGGF12 (2020).

Fabrication method of Cu(In,Ga)(S,Se)₂ films

Sulfurization after selenization process

T. Kato, Jpn. J. Appl, Appl. Phys., 56, 04CA02 (2017). T. Maeda *et al.*, Jpn. J. Appl, Appl. Phys., 59, SGGF12 (2020).

XAFS analysis for CIS and related materials

A structural study of Cu-In-Se compounds by x-ray absorption fine structure

S. Yamazoe, H. Kou, T. Wada *J. Mater, Res.*, 26, 1504 (2011).

The local structures about Cu, In, and Se atoms in a series of $Cu_2Se-In_2Se_3$ pseudobinary compounds have been investigated by XAFS. We conclude that $Cu_{0.9}InSe_{1.95}$ and $V_{Cu}_{0.82}InSe_{1.91}$ have a chalcopyrite structure with V_{Cu} and that the structure of $CuIn_3Se_5$ and $CuIn_5Se_8$ is a stannite-like structure with V_{Cu} and In_{Cu} defects.

Precise structural analysis

Low-temperature XAFS measurement gives local atomic arrangement significantly differed from average crystallographic structure obtained by x-ray or neutron diffraction.

Evaluation for property of chemical bond

EXAFS equation

$$\chi(k) = S_0^2 \sum \frac{CN}{kr^2} f(k; \pi) \exp(-2\sigma^2 k^2) \sin(2kr + \delta(k) - \frac{4}{3}C_3 k^3)$$

Evaluation for property of chemical bond

EXAFS equation

$$\chi(k) = S_0^2 \sum \frac{CN}{kr^2} f(k; \pi) \exp(-2\sigma^2 k^2) \sin(2kr + \delta(k) - \frac{4}{3}C_3 k^3)$$

Einstein model

Einstein frequency of chemical bond

Interatomic vibration is treated as a harmonic oscillator.

$$\omega_{\rm E} = \frac{2\pi k_{\rm B} \theta_{\rm E}}{h}$$

h : Planck constant $k_{\rm B}$: Boltzmann constant $\theta_{\rm E}$: Einstein temperature

Evaluation for property of chemical bond

EXAFS equation

$$\chi(k) = S_0^2 \sum \frac{CN}{kr^2} f(k; \pi) \exp(-2\sigma^2 k^2) \sin(2kr + \delta(k) - \frac{4}{3}C_3 k^3)$$

Einstein model

Einstein frequency of chemical bond

Interatomic vibration is treated as a harmonic oscillator.

$$\omega_{\rm E} = \frac{2\pi k_{\rm B} \theta_{\rm E}}{h}$$

h: Planck constant $k_{\rm B}$: Boltzmann constant $\theta_{\rm F}$: Einstein temperature

Einstein temperature is determined by following equation.

$$\sigma^{2} = \sigma_{s}^{2} + \frac{h^{2}}{8\pi^{2}\mu k_{B}\theta_{E}} \operatorname{coth}\left(\frac{\theta_{E}}{2T}\right) \qquad \mu : \text{Reduced mass}$$

$$T: \text{Temperature}$$

Evaluation for property of chemical bond

EXAFS equation

$$\chi(k) = S_0^2 \sum \frac{CN}{kr^2} f(k; \pi) \exp(-2\sigma^2 k^2) \sin(2kr + \delta(k) - \frac{4}{3}C_3 k^3)$$

Einstein model

Einstein frequency of chemical bond

Interatomic vibration is treated as a harmonic oscillator.

$$\omega_{\rm E} = \frac{2\pi k_{\rm B} \theta_{\rm E}}{h}$$

h : Planck constant $k_{\rm B}$: Boltzmann constant $\theta_{\rm E}$: Einstein temperature

Evaluation using Einstein temperature is expected to be the evaluation of diffusion property of the chemical species.

Evaluation for chemical bonds in CulnSe₂ and CuGaSe₂

**P.P. Lottici et al., Phys. Rev. B, 37, 9017 (1988).

Studies on Evaluation of chemical bonds in CIGSe and CIGS are limited. We performed the chemical bond analysis of CIGSe and **CIGS** series using low-temperature XAFS.

Experimental

Sample Preparation

Cu(In,Ga)Se₂ and Cu(In,Ga)S₂

XAFS measurement

The powder samples was diluted by boron nitride (BN), and pressed and molded into a disc shape.

XAFS spectra (Cu, In, Ga K-edge) were recorded in transmission mode at 10, 20, 50, 100, 200 and 300 K using a Si(311) double crystal monochromator at SPring-8 BL01B1.

XRD patterns

Cu(In,Ga)Se₂ and Cu(In,Ga)S₂ with chalcopyrite-type structure were successfully synthesized.

Temperature dependence of EXAFS

The EXAFS oscillation got closer to a monotonous sine function with increasing temperature. The peak in the second coordination sphere disappeared with increasing temperature.

Temperature dependence

The bond length and Debye-Waller factors increased with temperature.

Temperature dependence

Einstein temperature

*Y. Kuwahara et al., J. Appl. Phys., 76, 7864 (1994). **P.P. Lottici et al., Phys. Rev. B, 37, 9017 (1988).

Einstein temperature

Activation energy of migration				
	Cu	In	Ga	
CulnSe ₂	1.06 eV	1.70 eV	-	
CuGaSe₂	0.94 eV	-	1.89 eV	
S. Nakamura et al., Jpn. J. Appl, Appl. Phys., 52, 04CR01 (2013)				

S. Nakamura et al., Phys. Status. Solidi. A, 210, 1317 (2013).

The evaluation of the bond hardness by Einstein temperature is consistent with the trend of the theoretical calculations.

Einstein temperature

Comparing the Cu(In,Ga)Se₂ and Cu(In,Ga)S₂ systems, the Einstein temperature of the bonds in Cu(In,Ga)S₂ is clearly higher. \rightarrow The bonds are hard.

Conclusion

- Evaluation of chemical bonds in CIGSe and CIGS using lowtemperature XAFS was performed.
- The results of the analysis using the Einstein model are applicable to the evaluation of diffusion.

- For Cu(In,Ga)Se₂ and Cu(In,Ga)S₂, the order of bond hardness is Ga-Se(S) > In-Se (S) > Cu-Se (S).
- The bonds in Cu(In,Ga)S₂ are harder than those bonds in Cu(In,Ga)Se₂. The result indicates that sulfur is more difficult to diffuse in Cu(In,Ga)(S,Se)₂ than selenium.