Effects of Alkali-PDT on Low Bandgap (Ag,Cu)InSe₂ Solar Cells

Nicholas Valdes and William Shafarman

Institute of Energy Conversion and Dept. Materials Science and Engineering

University of Delaware

Motivation

2

- □ Interest in CIGS to be a bottom cell in a tandem
- Reduced Ga/(Ga+In) (GGI) is required to lower the bandgap (*E*_g)
 - But lower efficiencies obtained with E_g < 1.1 eV</p>
- What approaches will improve efficiency of low E_g CIGS?

Approach 1: Ag Alloying

3

- Lower defect density (Erslev et al. 2011)
- Longer minority carrier lifetime (Garris et al. 2017)
- Larger grain sizes (Chen et al. 2014)
- Improved long wavelength QE in low E_g devices (Valdes et al. 2019)

N. Valdes et al., Sol. En. Mater. Sol. Cells, 2019.

ACIGS

L. Chen et al., IEEE J. Photovoltaics, 2014.

Approach 2: Alkali Post-Deposition Treatments

- Led to record efficiency CIGS solar cells
- Most PDT studies done on co-evaporated CIGS, with GGI = 0.2 – 0.4
 - > We've focused on:
 - Will the PDT results apply for GGI = 0 (CIS)?
 - The effect of Ag on PDT for interest in Ag alloyed CIS and CIGS

Nicholas Valdes

Carolin Fella¹, Lukas Kranz¹, Debora Keller¹, Christina Gretener¹, Harald Hagendorfer¹,

5/27/2020

Solar Frontier Achieves World Record Thin-Film Solar Cell

Approach 2: Alkali Post-Deposition Treatments

- Led to record efficiency CIGS solar cells
- Most PDT studies done on co-evaporated CIGS, with GGI = 0.2 – 0.4
 - > We've focused on:
 - Will the PDT results apply for GGI = 0 (CIS)?
 - The effect of Ag on PDT for interest in Ag alloyed CIS and CIGS

Adrian Chirilă¹*[†], Patrick Reinhard^{1†}, Fabian Pianezzi¹, Patrick Bloesch¹, Alexander R. Uhl¹, Carolin Fella¹, Lukas Kranz¹, Debora Keller¹, Christina Gretener¹, Harald Hagendorfer¹,

5/27/2020

How do Ga and Ag influence the alkali-PDT on CuInSe₂?

Experimental Details

Use three-stage co-evaporation to grow the following absorber layers:

Samples with alkali-PDT: ~7.5 nm KF or RbF with $T_{sub} = 350^{\circ}C$ with Se flux

6

Compare samples rinsed vs. not rinsed with deionized water

How does Ga influence the KF-PDT on CuInSe₂?

7

5/27/2020

Nicholas Valdes

N. Valdes et al., *IEEE JPV*, p1846, 2019.

- Use XPS to understand differences in surface chemistry between CIGS+KF and CIS+KF
- □ F 1s spectra provides information on:
 - Intermediate chemistry after PDT and before CdS deposition
 - Proportional to K content without overlapping Auger lines

N. Valdes et al., IEEE JPV, p1846, 2019.

- Nearly identical F 1s peaks in nonrinsed CIS+KF and CIGS+KF
 - Ga does not affect KF content
 - Also see a similar intensity comparison in K 2p
- □ F 1s removed with water rinsing
 - F is on the surface as a watersoluble compound

N. Valdes et al., IEEE JPV, p1846, 2019.

Candidate	Binding Energy (eV)	
Measured F 1s	685.0	
GaF ₃	685.7	
InF ₃	685.0	
KF	684.0	
CuF ₂	684.3	

- M. Tabbal et al., Mat. Res. Soc. Symp. Proc., 1992.
- Y. Kawamoto et al., J. Fluorine Chem., 1999.
- W. Morgan et al., J. Am. Chem. Soc., 1973.
- S. Gaarenstroom and N. Winograd, J. Chem. Phys., 1977.

N. Valdes et al., IEEE JPV, p1846, 2019.

Candidate	Binding Energy (eV)
Measured F 1s	685.0
GaF ₃	685.7
InF ₃	685.0
KF	684.0
CuF ₂	684.3

- M. Tabbal et al., Mat. Res. Soc. Symp. Proc., 1992.
- Y. Kawamoto et al., J. Fluorine Chem., 1999.
- W. Morgan et al., J. Am. Chem. Soc., 1973.
- S. Gaarenstroom and N. Winograd, J. Chem. Phys., 1977.

Binding Energy (eV)

N. Valdes et al., IEEE JPV, p1846, 2019.

Candidate	Binding Energy (eV)
Measured F 1s	685.0
GaF ₃	685.7
InF ₃	685.0
KF	684.0
CuF ₂	684.3

- M. Tabbal et al., Mat. Res. Soc. Symp. Proc., 1992.
- Y. Kawamoto et al., J. Fluorine Chem., 1999.
- W. Morgan et al., J. Am. Chem. Soc., 1973.
- S. Gaarenstroom and N. Winograd, J. Chem. Phys., 1977.

Nicholas Valdes

Ga $2p_{3/2}$ of CIGS+KF

N. Valdes et al., *IEEE JPV*, p1846, 2019.

- □ Ga $2p_{3/2}$ narrows after rinsing
 - High GGI before rinsing
 - Baseline value afterwards
 - Removal of Ga with water rinsing

Туре	GGI
Non-rinsed	0.47
Rinsed	0.28

Nicholas Valdes

Ga $2p_{3/2}$ of CIGS+KF

- Low binding energy peak: Ga in CIGS
 - Matches CIGS+KF rinsed and CIGS
- □ High binding energy peak: GaF₃
 - > Also seen by Lepetit et al. in 2017

Туре	Binding Energy (eV)
Measured GaF ₃	1119.0
Literature GaF ₃	1119.4

M. Tabbal et al., Mat. Res. Soc. Symp. Proc., 1992.

In $3d_{5/2}$ CIGS+KF

17

N. Valdes et al., *IEEE JPV*, p1846, 2019.

- Rinsed samples have higher intensity In 3d peaks
 - Surface layer that reduced XPS signal removed by water rinsing
 - Other elements' spectra also show this

□ CIGS+KF does not show InF₃ peak

In 3d_{5/2} of CIS+KF and CIGS+KF

18

N. Valdes et al., *IEEE JPV*, p1846, 2019.

- Rinsed samples have higher intensity In 3d peaks
 - Surface layer that reduced XPS signal removed by water rinsing
 - Other elements' spectra also show this
- CIGS+KF does not show InF₃ peak
- CIS+KF rinsed similar to CIGS+KF rinsed

In 3d_{5/2} of CIS+KF and CIGS+KF

N. Valdes et al., *IEEE JPV*, p1846, 2019.

- Rinsed samples have higher intensity In 3d peaks
 - Surface layer that reduced XPS signal removed by water rinsing
 - Other elements' spectra also show this
- □ CIGS+KF does not show InF₃ peak
- CIS+KF rinsed similar to CIGS+KF rinsed
- CIS+KF non-rinsed shows peak at higher binding energy

N. Valdes et al., *IEEE JPV*, p1846, 2019.

In $3d_{5/2}$ of CIS+KF

21

N. Valdes et al., *IEEE JPV*, p1846, 2019.

□ Low binding energy peak: In in CIS

Matches CIS+KF rinsed and CIS

□ High binding energy peak: InF₃

Туре	Binding Energy (eV)	
Measured InF_3	445.9	
Literature InF ₃	446.0	

• T. Paul and D. Bose, J. Appl. Phys., 1991.

In 3d_{5/2} of CIS+KF and CIGS+KF

22

N. Valdes et al., *IEEE JPV*, p1846, 2019.

- \Box InF₃ appears in CIS+KF non-rinsed
 - But not in CIGS+KF non-rinsed
- □ Preferential reaction:
 - F binds to In in CIS+KF
 - F binds to Ga in CIGS+KF

Role of GaF_3 and InF_3 on Non-Rinsed Films

□ GaF₃ or InF₃ are products of KF reaction with Cu-deficient CIGS

- > Could be $K(In,Ga)F_4$ and $K_3(In,Ga)F_6$ (exist, but no XPS information found)
- □ GaF₃ or InF₃ \rightarrow no effect on performance as they are removed during CdS deposition
- □ Not clear if removal of surface Ga via GaF₃ alters surface electronic properties

Cu Composition Reduction Due to KF-PDT

Туре	% Reduction Cu 2 <i>p</i> XPS Peak Area
$CIS \rightarrow CIS + KF$	35
$CIGS \rightarrow CIGS + KF$	51

Samples were water rinsed. N. Valdes et al., *IEEE JPV*, p1846, 2019.

- Alkali-PDTs known to reduce Cu content on the surface
- Ga containing films have larger decrease in surface Cu concentration due to KF

24

- > Is it due to Ga chemistry, or a morphology effect?
- > Might explain "depletion" in surface Cu with KF

Nicholas Valdes

Institute of Energy Conversion

- KF shows similar V_{OC} trends with or without Ga
 - > Focus on low E_a case, CIS
- Baseline CdS (50 nm):
 - > CIS and CIS+KF \rightarrow Similar V_{OC}
- Thin CdS (35 nm):
 - > Reduced $V_{\rm OC}$ in CIS
 - > No $V_{\rm OC}$ reduction in CIS+KF
 - Improved CdS growth

5/27/2020

N. Valdes et al., IEEE JPV, p906, 2019.

KF Effect on CIS V_{OC} After Heat Treatment

Nicholas Valdes

- Some devices received 2 min. 200°C heat treatment in air after initial test
- All types get V_{OC} boost except CIS with thin CdS
- □ CIS+KF with thin CdS: V_{OC} > 500 mV
- Heat treatment critical for high efficiency CIS+KF

High Efficiency CIS+KF

Institute of Energy Conversion

- Deposited MgF₂ anti-reflection coating on best cells
- Best cell η = 16.0%
 - Record CuInSe₂ solar cell
- □ KF → higher efficiency CIGS for range of Ga content

5/27/2020

Are high efficiencies also possible in ACIS+KF?

V_{OC} Comparison

Nicholas Valdes

- □ ACIS has lower $V_{\rm OC}$ than CIS
 - Low carrier concentration in best devices
 - But makes up for V_{OC} reduction by improved current collection (Valdes et al. 2019)

Baseline CdS. Devices were not heat treated. N. Valdes et al., *IEEE JPV*, p906, 2019.

V_{OC} Comparison

Nicholas Valdes

- □ ACIS+KF has very low $V_{\rm OC}$
- V_{OC} reduction independent of KF thickness from 0.5 nm to 15 nm
- ❑ Uppsala U. → reduced KF amounts required in ACIGS (Edoff et al. 2017, Donzel-Gargand et al. 2018)

Baseline CdS. Devices were not heat treated. N. Valdes et al., *IEEE JPV*, p906, 2019.

V_{OC} Comparison

30

Nicholas Valdes

nstitute of Energy Conversio

Group 1 Composition Reduction Due to KF by XPS

Туре	Element	% Reduction XPS Peak Area
$CIS \rightarrow CIS + KF$	Cu	35
$ACIS \to ACIS+KF$	Cu	42
$ACIS \to ACIS+KF$	Ag	25

Samples were water rinsed. N. Valdes et al., *IEEE JPV*, p1846, 2019.

- □ Ag decreases less than Cu with KF-PDT
 - > Also seen by Donzel-Gargand et al. 2018 in ACIGS
- Additional observations by XPS for ACIS and ACIGS:
 - > No change in surface K or F content or binding energy
 - > InF_3 in ACIS+KF and GaF_3 in ACIGS+KF still present in non-rinsed samples

Raman Spectroscopy of Bare Absorber Layers

N. Valdes et al., IEEE JPV, p906, 2019.

- □ Broad peak ~255 cm⁻¹ for ACIS+KF
- Not identified by Raman or GIXRD
- Possible candidates:
 - \succ α-ln₂Se₃ = 255 cm⁻¹
 - > $Cu_2Se = 260 \text{ cm}^{-1}$
- Regardless, different surface exists for ACIS+KF
- Still present after water rinse or chemical etch
 - ➢ e.g. HCI, KCN, NH₄OH

Features of ACIS+KF Devices

□ ACIS+KF demonstrates lower E_a compared to other devices

Interface recombination dominates in these devices

□ Light to dark crossover observed in *J*-*V* of ACIS+KF

> Maybe related to photoconductivity in the CdS layer

Comparison of Best Cell Baseline vs. Thin Buffers

Туре	Baseline CdS V _{oc} (mV)	Thin CdS <i>V_{oc} (</i> mV)	Thin - Baseline V _{OC} (mV)
CIS	482	469	- 13
CIS+KF	485	487	+ 2
ACIS	455	458	+ 3
ACIS+KF	411	436	+ 25

Reduced CdS thickness:

Devices were not heat treated N. Valdes et al., *IEEE JPV*, p906, 2019.

- > CIS has decreased V_{OC} likely due to incomplete CdS coverage
- > No change in V_{OC} for CIS+KF or ACIS
- > Large improvement in V_{OC} in ACIS+KF

Comparison of Best Cell Baseline vs. Thin Buffers

Туре	Baseline CdS V _{oc} (mV)	Thin CdS <i>V_{oc} (</i> mV)	Thin - Baseline V _{oc} (mV)
CIS	482	469	- 13
CIS+KF	485	487	+ 2
ACIS	455	458	+ 3
ACIS+KF	411	436	+ 25

Reduced CdS thickness:

Devices were not heat treated N. Valdes et al., *IEEE JPV*, p906, 2019.

5/27/2020

- > CIS has decreased V_{OC} likely due to incomplete CdS coverage
- > No change in V_{OC} for CIS+KF or ACIS
- Large improvement in V_{oc} in ACIS+KF

Does CdS grow differently due to KF and/or Ag alloying?

SEM with 10 nm CdS Overlayer

CIS

- □ Incomplete coverage on some grains
 - Related to {112} oriented grains (Witte et al. 2013)
 - Metal or anion terminated

CIS+KF

5/27/2020

Improved coverage due to KF

N. Valdes et al., IEEE JPV, p906, 2019.

Nicholas Valdes

SEM with 10 nm CdS Overlayer

37

ACIS

- □ Large grains with incomplete coverage
 - Perhaps same as CIS but on a larger scale

ACIS+KF

- Complete coverage even with 10 nm CdS
 - Increased Cd and S seen by XPS (Valdes et al. 2019)

5/27/2020

□ KF causes different nucleation

Nicholas Valdes

Do we see similar trends with RbF-PDT?

38

Nicholas Valdes

How Do Best Cell Results Compare with RbF?

Туре	Baseline CdS V _{oc} (mV)	Thin CdS V _{oc} (mV)	Thin - Baseline V _{oc} (mV)
CIS	482	469	- 13
CIS+RbF	482	477	- 5
ACIS	455	458	+ 3
ACIS+RbF	362	386	+ 24

39

RbF J-V results \rightarrow similar trends to KF:

Devices were not heat treated

- > CIS+RbF:
 - * Comparable V_{OC} to CIS (with no heat treatment)
 - Reduced $V_{\rm OC}$ loss with thin CdS
- > ACIS+RbF:
 - \diamond Decreased V_{OC} vs. ACIS
 - * Large increase in V_{OC} with thinner CdS

Raman Spectra of Bare Absorber Layers

- Unidentified peak also exists in ACIS+RbF
 - Both KF and RbF lead to a modified surface in ACIS+alkali-PDT

Summary (1/2)

- Investigated alkali-PDTs on CIS and the influence of Ga and Ag
- □ Studied the XPS properties of CIS vs. CIGS
 - ➢ Ga does not change the amount of K or F on surface
 - Group III fluorides are products of KF reaction
 - Preferential reaction occurs in which
 - $\textbf{\& CIGS+KF} \rightarrow \text{GaF}_3$
 - $\textbf{\& CIS+KF} \rightarrow \text{InF}_3$
 - CIGS has larger decrease in Cu on surface after KF
- □ CIS+KF devices:
 - Tolerate reduced CdS thickness
 - > Have high efficiencies after heat treatment
 - * η = 16.0% for CIS without Ga

Summary (2/2)

- □ ACIS+KF leads to devices with low V_{OC}
- □ ACIS+KF has properties unique from other absorbers in this work:
 - Less Ag reduction at surface compared with Cu
 - ➢ Unidentified peak at 255 cm⁻¹ in Raman spectra
 - Dominant interface recombination
 - Light to dark crossover
 - Different CdS growth
- □ RbF-PDT gives similar *J*-*V* and Raman results for both CIS and ACIS

Acknowledgments

- □ Funding by NSF under award number 1507291 and 1428149
- Discussion and technical support of IEC and UD colleagues, past and present:
 - Wayne Buchanan
 - Shannon Fields
 - Jason Anderson
 - Kevin Dobson
 - Christopher Thompson
 - Kevin Jones
 - Robert Opila
 - Yong Zhao

nhvaldes@udel.edu

