

Investigation of AgGaSe₂ as a wide band gap solar cell absorber

J. K. Larsen*, K. Sopiha, J. Keller,J. S. Scragg, O. Donzel-Gargand,C. Platzer-Björkman, M. Edoff

Division of Solar Cell Technology Department of Material Science and Engineering, Uppsala University

* jes.larsen@angstrom.uu.se

UPPSALA UNIVERSITET

Why AgGaSe₂?

- Wide band gap (1.75 1.8 eV)
- Potential tandem top cell absorber
- Good band alignment with CdS¹
- Not widely studied

Questions adressed here

- Which secondary phases can form during co-evaporation?
- Detection of secondary phases?
- Solar cell behaviour with presence of secondary phases?

1. Keller, et al. *Progress in Photovoltaics: Research and Applications* 28, no. 4 (April 2020): 237–50.

Motivation

Is Ag the new Cu?

Ag₂Se-Ga₂Se₃ Pseudobinary Phase Diagram

Phase diagram

- AgGaSe₂ single phase region:
 [Ag]/[Ga] = 0.95 1
- Valid for thin film by coevaporation?
- What is the ordered vacancy compound (OVC)?

Mikkelsen, J. C., *Materials Research Bulletin* 12, no. 5 (1 May 1977): 497–502.

What is the OVC phase?

- Enthalpy of formation from DFT calculation
- AgGaSe₂ has low tolerance to off-stoichiometry
- $AgGa_5Se_8$ is the most stable OVC

Calculations by Kostiantyn Sopiha <kostiantyn.sopiha@angstrom.uu.se>

$AgGa_5Se_8$ or $AgGa_3Se_5$?

- Reference sample deposited by co-evaporation on Mo
- The predicted most stable OVC AgGa₅Se₈ matches the measured XRD pattern

Identification by XRD

- Reference materials deposited by co-evaporation on Mo
- Substrate temperature 550°C
- Matches expected structures in literature (except AgGa₅Se₈)
- Unique reflections allow identification of all phases

Identification by Raman

Identification by Raman

- Normalized Raman
- Ag₉GaSe₆ (10 x laser power)
 - AgGa₅Se₈ and Ga₂Se₃ are very similar
- Raman not ideal to identify all phases in system

UPPSALA UNIVERSITET

Band gaps of phases

- Reference material on glass
- Spectrophotometry (T-R)

Phase	Estimated band gap [eV]
Ga ₂ Se ₃	2.21
AgGa₅Se ₈	2.11
AgGaSe ₂	1.78
Ag_9GaSe_6	0.6
Ag ₂ Se	-

Impact of Ag₉GaSe₆ on device

[Ag]/[Ga] = 1.16Ag₉GaSe₆ not etched by KCN

High photoconductivity?

Impact of Ag₉GaSe₆ on device

Impact of AgGa₅Se₈ on device

	[Ag]/[Ga]	V _{oc} [mV]	J _{sc} [mA/cm ²]	FF [%]	Efficiency [%]
1-stage	0.86	911 (833)	12.2 (11.7)	53 (52)	5.8 (5.1)
3-stage	0.87	592 (590)	5.3 (2.1)	32 (34)	1 (0.4)

AgGa₅Se₈ distribution in 1-stage device

AgGa₅Se₈ distribution in 1-stage device

Ga Se

Ag

8

6

1-stage: AgGa₅Se₈ located in spots and extend through film

UPPSALA UNIVERSITET

AgGa₅Se₈ distribution in 3-stage device

AgGa₅Se₈ distribution in 3-stage device

3-stage: AgGa₅Se₈ located front and back surface

- Narrow single phase region (0.9 < [Ag]/[Ga] < 1)
- Phases identifiable in XRD, (Raman)
- Presence of Ag₉GaSe₆ (E_g =0.6 eV) detrimental
- Device may work with inclusions of AgGa₅Se₈ (E_g =2.11 eV), but distribution of phase important

Acknowledgements

WALLENBERG ACADEMY FELLOWS

Vetenskapsrådet