

Cu(In,Ga)Se₂ thin-film micro-concentrator solar cells

Sascha Sadewasser¹, Marina Alves¹, Ana Pérez-Rodríguez¹, César Domínguez^{3,4}, Phillip J. Dale²

¹ INL - International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
 ² Physics and Materials Science Research Unit, University of Luxembourg, L-4422 Belvaux, Luxembourg
 ³ Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain
 ⁴ ETS de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid. 28012 Madrid, Spain

www.inl.int

Motivation Concentrator photovoltaics (CPV)

- <u>Idea</u>: Reduce area of solar cell and replace by more cost-efficient optics
- Solar cell area ~ 1 cm²
- Mostly employs III-V multi-junction solar cells
- Bulky modules
- Sun tracking required \rightarrow bulky tracker
- Cooling required

M. Wiesenfarth et al., CPV Report TP-6A20-63916 Natl. Renew. Energy Lab (2017).

Motivation Micro-scale concentrator photovoltaics (μ-CPV)

а

- Idea: Reduce area of solar cell further
- Solar cell area sub-mm²
- Mostly employs III-V multi-junction solar cells
- Modules get slimmer
- Sun tracking required \rightarrow option for integrated tracking
- Cooling required

O. Fidaner et al., Appl. Phys. Lett. 104, 103902 (2014). J.S. Price et al., Nature Comm. 6, 6223 (2015).

700 µm

Motivation Cu(In,Ga)Se₂ micro-concentrator thin-film photovoltaics

M. Paire et al., SPIE Newsroom 5, 2 (2013) M. Alves et al., J. Phys.: Energy 2, 012001 (2020).

~0.1 mm

Motivation Cu(In,Ga)Se₂ micro-concentrator thin-film photovoltaics

Timm 9.1 mm

Why?

- \rightarrow Decrease significantly the use of critical raw materials (In, Ga)
- \rightarrow Decrease solar cell size to ~100 μm
- \rightarrow Increase efficiency
- → Heat input per cell is reduced. As the ratio of surface area to volume becomes higher, heat dissipation is improved.
- \rightarrow Cu(In,Ga)Se₂ enables direct structured deposition
- \rightarrow Shorter optical paths lead to lower absorption losses.
- → The short focal length leads to thin modules that employ less material.
- → The current generated at each cell is lower → series resistance losses can be reduced.
- \rightarrow Lower impact of light spot inhomogeneity

M. Paire et al., SPIE Newsroom 5, 2 (2013) M. Alves et al., J. Phys.: Energy 2, 012001 (2020).

→ Significant decrease in use of critical raw materials (In, Ga)

- \rightarrow Increase efficiency
- → Improved heat dissipation at micrometer scale

Rough Estimates:

Regular CIGSe thin-film photovoltaics:

- Indium per m²: ~ 2 g
- If all PV production of 1 year would be CIGSe: 100 GW
- 1 module with 20% efficiency gives 200 W/m^2
- \rightarrow 500×10⁶ m² CIGSe production / year
- \rightarrow 1000 tons indium / year
- Annual In production in 2019: 760 tons

For micro-concentrator with 100X concentration:

• \rightarrow Indium need of 10 tons / year

Benefits Micro-concentrator thin-film photovoltaics

- → Significant decrease in use of critical raw materials (In, Ga)
- \rightarrow Increase efficiency
- → Improved heat dissipation at micrometer scale

• Concentrated light leads to an increase in V_{oc}

- Parameters from P. Jackson 21.7% solar cell
- Assume no change in FF, A, J₀ with concentration

D. Siopa et al., submitted (2020)P. Jackson et al., *pss RRL 9*, 28 (2015).

Benefits Micro-concentrator thin-film photovoltaics

www.inl.int | Sascha.Sadewasser@inl.int

PHOTOVOLTAÏQUE D'ILE-DE-FRANCE

Insulating top contact by dielectric layer and shadowing by metallic layer ٠ Au Au dielectric dielectric dielectric i-ZnO i-ZnO i-ZnO Absorber Absorber Absorber Mo Mo Mo

i) Mo/CIGSe/CdS/i-ZnO masked and SiO₂ + Ti/Au layers added

ii) Resist mask removed

iii) ZnO:Al added and cells isolated. Part of the Ti/Au revealed by etching away ZnO:Al

M. Paire et al., Appl. Phys. Lett. 98, 264102 (2011).

• Insulating top contact by dielectric layer and shadowing by metallic layer

M. Paire et al., Appl. Phys. Lett. 98, 264102 (2011).

Incident light power (mW/cm²)

- η =17% @ 120X concentration
- Logarithmic V_{oc} increase up to 1000X conc.
- Series resistance from electrical contacts and the absorber layer lead to decrease for higher conc.

PHOTOVOLTAÏOUE

D'ILE-DE-FRANCE

PHOTOVOLTAÏOUE

D'ILE-DE-FRANCE

Insulating top contact by dielectric layer and shadowing by metallic layer ۲ Concentration ratio 10² 10[°] 10¹ 10³ 22 Absorber Absorber Absorber i) Mo/CIGSe/CdS/i-ZnO masked and iii) ZnO:Al added and cells isolated. Part of ii) Resist mask removed SiO₂ + Ti/Au layers added the Ti/Au revealed by etching away ZnO:Al 20 Efficiency (%) 15 µm (b) 18 ZnO ZnO Au Au SiO₂ SiO₂ Buffer Buffer CIGS 16 CIGS 10^{2} 10³ 10⁵ 10 J_{sc} (mA/cm²) Mo Mo Glass • η =21.3% @ 475X concentration for 50 μ m micro Glass

solar cell

M. Paire et al., J. Renewable Sustainable Energy 5, 011202 (2013).

M. Paire et al., Thin Solid Films 582, 258 (2015).

Fabrication Approaches **Top-down fabrication to demonstrate proof-of-concept**

Etch top contacts and absorber using photolithography defined mask and protect with epoxy ٠ from shunting

ii) Resist mask removed and epoxy resin layer added

Mo

epoxy

ZnO:Al

i-ZnO

iii) Micro cells revealed and protected by mask with Ti/Au contact layer added

iv) ZnO:Al added and cells isolated. Part of the Ti/Au revealed by etching away ZnO:Al

D'HE-DE-EBANCE

18 µm

25 µm

40 µm

140 µm

250 µm

10

10⁴

2

n

10⁰

10¹

Etch top contacts and absorber using photolithography defined mask and protect with epoxy ٠ from shunting Mo/CIGSe/CdS/i-ZnO/ ii) Resist mask removed iii) Micro cells revealed iv) ZnO:Al added and cells ZnO:Al masked and and epoxy resin layer and protected by mask isolated. Part of the Ti/Au revealed by etching away etched twice added with Ti/Au contact layer added ZnO:Al 1.0 18-0.9 16 -400 nm 0.8 0.7 Efficiency (%) 0.6 10 8

10²

Concentration (sun)

 10^{3}

10⁴

 η =18% @ 900X concentration (40 μ m cell) ۲ Well passivated edges confirmed by LBIC and PL measurements

M. Paire et al., Thin Solid Films 582, 258 (2015).

10¹

0.3

0.2

0.1

0.0

10⁰

10²

Concentration (sun)

• CIGSe by electrodeposition on micro-electrodes

NANOTECHNOLOG

Fabrication:

- Photolithography and reactive ion etching for etching holes into a SiO₂ layer on Mo back contact
- Electrodeposition of CuInSe₂ into holes and selenization
- Finish solar cell device by regular
 CdS and ZnO deposition

S. Sadewasser et al., Sol. Energy Mater. Sol. Cells 159, 496 (2017).

• CIGSe by electrodeposition on micro-electrodes

• CIGSe by electrodeposition on micro-electrodes

	J_{sc} (mA/cm ²)	$V_{oc}\left(mV ight)$	FF (%)	η (%)	Width (μ m)
$0.1 \mathrm{cm}^2$	33.2	587	56.4	11.0	3160
1105 µm	30.3	449	56.1	7.64	1105
105 µm	30.2	368	48.3	5.38	105

A. Duchatelet al., Appl. Phys. Lett. 109, 253901 (2016).

• η = 5.38 % for 105 μ m wide line-shaped cell under 1 sun illumination

• CIGSe by electrodeposition on micro-electrodes

• CIGSe by electrodeposition on micro-electrodes

D. Correia et al., Results in Physics 12, 2136 (2019).D. Correia et al., Proc. IEEE PVSC, 794 (2018).D. Siopa et al., submitted (2020).

- $\eta = 4.8 \%$ @ 1 sun for 200 μ m micro solar cell
- η = 4.6 % @ 35X concentration for 200 μ m micro solar cell with 2 % @ 1 sun

B. Heidmann et al., Materials Today Energy 6, 238e247 (2017).F. Ringleb et al., Beilstein J. Nanotechnol. 9, 3025 (2018).

۲

UNIVERSITÄT

D U I S B U R G E S S E N

HZB

Zentrum Berlin

B. Heidmann et al., Materials Today Energy 6, 238e247 (2017).F. Ringleb et al., Beilstein J. Nanotechnol. *9*, 3025 (2018).

UNIVERSITÄT

Helmholtz rum Berlin ESSEN

HZB

Zentrum Berlin

- Site-controlled indium deposition and conversion into CIGSe ٠
 - LIFT Laser-induced forward transfer ٠

S. Andree et al., Appl. Phys. A 123, 670 (2017). B. Heidmann et al., ACS Appl. Energy Mater. 1, 27 (2018). F. Ringleb et al., Beilstein J. Nanotechnol. 9, 3025 (2018).

Summary overview CIGSe micro-concentrator thin-film solar cells

- Top-down fabrication leads to higher efficiencies and V_{oc}s
- Relative efficiency and V_{oc} gains are close to expected behavior
- Relative efficiency and Voc gains are similar for top-down and bottom-up approaches

M. Alves et al., J. Phys.: Energy 2, 012001 (2020).

Combination with Concentration Optics Micro-concentrator thin-film photovoltaics

64.6x

71.8×

65.7×

73.1×

12.4

12.6

1978

2198

742

757

65.5

65.2

Complete system (0.9 suns)

Complete system (1 sun)*

S. Jutteau et al., Applied Optics 55, 6656 (2016).

- CIGSe micro-concentrator photovoltaics is a promising approach to reduce the requirement for critical raw materials
- Top-down fabrication of CIGSe micro solar cells has demonstrated up to 21.3 % efficiency at 475X concentration
- Various bottom-up fabrication routes have been demonstrated, currently still lower efficiencies
- Combination with micro optics has been demonstrated

"Thin-film micro-concentrator solar cells"

M. Alves, A. Pérez-Rodríguez, P.J. Dale, C. Domínguez, S. Sadewasser, J. Phys.: Energy 2, 012001 (2020).

Acknowledgments

We acknowledge support by the Micro-concentrator thin-film solar cells project (028922), co-funded by FCT and the ERDF through COMPETE2020. The work of C. Domínguez is supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (FEDER) under the Project MICRO-PV reference ENE2017-87825-C2-1-R.

Thank you for your attention

www.inl.int