An investigation of Arsenic doped CdSe_xTe_{1-x} absorber layers for thin film photovoltaics using Density Functional Theory (DFT)

Presenter- Akash Shah Ph.D. Candidate Research Team – Anthony P. Nicholson, Aanand Thiyagarajan and Walajabad S. Sampath Colorado State University, USA Next Generation PV Center

Motivation

Champion device has CdSeTe/CdTe absorber layers Arsenic doped CdSeTe/CdTe absorber layers have shown good lifetime and high External Radiative Efficiency

It is imperative to understand the properties of Arsenic doped CdSeTe/CdTe interface/surface to further improve device performance.

Atomistic simulation of interface

Quote	Interface is device. Nobel Laureate Herbert Kroemer
Quote	Interface is device- Nobel Ladreate Herbert Riberner
Interface modelling	Necessary to improve the device architecture
Current limitations	Band alignment simplification (does not include effects of strain or charge distribution), absence of defect states
Atomistic simulation	DFT enabled atomistic simulations provide detailed band diagram
QuantumATK, Synopsys	Suitable for 1 probe-surface (SGF**), 2 probe-interface simulations using NEGF method [*] ; easy to use GUI

**Surface Green's Function

CdSe_xTe_{1-x} model- Zinc blende

Modeling Parameters:

- Exchange-Correlation functional: Local Density Approximation (LDA)
- Pseudopotential: FHI for Cd and Se, OpenMX for Te
- Linear Combination of Atomic Orbitals (LCAO) based basis sets: DoubleZetaPolarized for Cd and Se, Low basis set for Te.
- K-points:8x8x8
- Density mesh cutoff: 3000 eV
- Force Tolerance: 0.05 eV/A
- Stress Tolerance: 0.1 Gpa
- For a Se concentration x, values are reported for the lowest energy supercell configuration

 $^{\rm a}\, {\rm Reshak}$ et.al. Journal of Alloys and Compounds 509 (2011) 6737–6750

*Drew E. Swanson, James R. Sites, Walajabad S. Sampath Solar Energy Materials & Solar Cells 159(2017) 389–394

CdSe_xTe_{1-x} model- Wurtzite

Se conc. (x)	a (A) this work	c (A) this work	a (A) exp	c (A) exp	a (A) theo	c (A) theo
0	4.69	7.64	4.57 ^a	7.47 ^a	4.68 ^a , 4.56 ^a	7.65 ^a , 7.54 ^a
0.125	4.64	7.55	-	-	-	-
0.25	4.59	7.47	-	-	4.563 ^a	14.563 ^a
0.5	4.496	7.3	-	-	4.437 ^a	7.459 ^a
0.625	4.48	7.227	-	-	-	-
0.75	4.405	7.15	-	-	4.429 ^a	14.891 ^a
1.0	4.311	7.008	4.3 ^a	7.01 ^a	4.34 ^a	7.27 ^a

CdSe_xTe_{1-x} Wurtzite structure follows Vegard's law.**

^a Reshak et.al., Journal of Alloys and Compounds 509 (2011) 6737–6750 **N. Muthukumarasamy et. al., Sol.Energy 83 (2009) 522–526.

Se Concentration

Modeling Parameters:

- Exchange-Correlation functional: Local Density Approximation (LDA)
- Pseudopotential: FHI for Cd and Se, OpenMX for Te
- Linear Combination of Atomic Orbitals (LCAO) based basis sets: DoubleZetaPolarized for Cd
- and Se, Low basis set for Te.
- K-points:8x8x8
- Density mesh cutoff: 3000 eV
- Force Tolerance: 0.05 eV/A
- Stress Tolerance: 0.1 Gpa
- For a Se concentration x, values are reported for the lowest energy supercell configuration

CdSe_xTe_{1-x} model: Bandgap Study

Se conc. (x)	Crystal structure	E _g (eV) this work	E _g (eV) theo	E _g (eV) exp	
0	Zinc blende	1.51	1.31ª, 1.51 ^b	1.50*,	
0	Wurtzite	1.56	1.56 ^b	1.6 ^a , 1.4 ^a	
0.125	Zinc blende	1.41	1.46 ^b		
	Wurtzite	1.45	1.45 ^b	-	
0.25	Zinc blende	1.45	1.44 ^a , 1.44 ^b		
	Wurtzite	1.50	1.49 ^b	-	
0.5	Zinc blende	1.38	1.56ª, 1.43 ^b	1.48 ^a	
	Wurtzite	1.42	1.42 ^b		
0.625	Zinc blende	1.29	1.43 ^b		
	Wurtzite	1.381	1.37 ^b	-	
0.75	Zinc blende	1.52	1.65ª, 1.45 ^b	1.425ª	
	Wurtzite	1.578	1.55ª, 1.51 ^b		
1.0	Zinc blende	1.80	1.76ª, 1.53 ^b	1.82ª,	
	Wurtzite	1.79	1.60 ^{a,b}	1.84 ^a	

Bandgap (eV) vs Se conc.

Exp data taken from ^{*}Drew E. Swanson, James R. Sites, Walajabad S. Sampath, Solar Energy Materials & Solar Cells 159(2017) 389–394.

^bData from Dr. Pooja Goddard, Loughborough University.

^a Reshak et.al. Journal of Alloys and Compounds 509 (2011) 6737–6750

DFT-1/2 (LDA-1/2) correction scheme was used to calculate the bandgap.

6

The DFT LCAO model correctly predicts the lattice parameter, bandgap values and bandgap bowing of $CdSe_{x}Te_{1-x}$ alloy.

As_{Te} doped CdTe (111) surface

Monolayer As_{Te} doped CdTe surface gives favorable band alignment for hole transport

25% $As_{Te/Se}$ doped $CdSe_{0.375}Te_{0.625}$ (111) surface

Favorable band alignment for hole transport with $As_{Te/Se}$ doped $CdSe_{0.375}Te_{0.625}$ surface could be achieved with lower doping concentration at surface

As_{Te} doped CdTe (111) film

- As_{Te} in bulk CdTe creates cusp in the Valence band with some interface states in the bandgap region.
- Conduction band bending up mitigates electron transport to the back of the device.

$As_{Te/Se}$ doped CdSe_{0.375}Te_{0.625} (111) film

- $As_{Te/Se}$ in bulk $CdSe_{0.375}Te_{0.635}$ creates cusp in the Valence band with and a clean bandgap region.
- Conduction band bending up mitigates electron transport to the back of the device.

Conclusion

- Innovation able to simulate As doped absorber materials using Density Functional Theory.
- The DFT LCAO model correctly predicts the lattice parameter, band gap values and bandgap bowing of $CdSe_xTe_{1-x}$ alloy.
- The CdTe surface model shows that band bending can be altered by changing the chemistry of the surface.
- The $CdSe_{0.375}Te_{0.625}$ surface model illustrates that favorable band bending for hole transport could be attained with lower concentration of $As_{Te/Se}$ at the surface.
- Arsenic doping of bulk CdSe_{0.375}Te_{0.625} shows cleaner bandgap region than Arsenic doped bulk CdTe. The results indicate conduction band bending up which mitigates electron transport to the back of the device.
- Feasibility of modeling bulk Arsenic doped CdSeTe/CdTe absorber layer is shown. Work is in progress to simulate for Arsenic graded absorber model.

Acknowledgement

- The authors would like to acknowledge Dr. Umberto M. Pozzoni from Synopsys for his technical guidance.
- This work utilized the Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University.
- Acknowledgement goes out to the National Science Foundation Graduate Research Fellowship, INTERN, and NSF/IUCRC Programs for the support and funding of the current research work.

Thank You for listening patiently!

Questions??

