Atomic-Resolution Characterization of Interfaces in Poly-Crystalline CdTe Devices

Robert F. Klie

J. Farrell, J. Guo

Nanoscale Physics Group, Department of Physics

A. Mannodi-Kanakkithodi, M.K.Y. Chan

Argonne National Laboratory

M. Nardone Bowling Green State University S. Walajabad and J. Sites

Colorado State University

NIVERSITY O LLINOIS T HICAGO

W DE TRANSPORT

ALE VERSION STATEMENT

The Nanoscale Physics Group

A G O

DOE SunShot EE0007545, EE0008557, EE0008974

Virtual Chalcogenide PV Conference 2020 May 26th, 2020

教师的资源和

[ve]

- Nearly ideal direct optical band gap (~1.45 eV)
- High absorption coefficient (99% absorption in 2 μm) enabling thin film technology

Wave vecto

- Fast/cheap processing can still yield high efficiency
 - Cost-effective PV devices

のないないないないと

• Economically viable for production

χL

Г

Wave Vector

Δ

Λ

х

M. CALLER CO. CALLER

A DESCRIPTION OF A DESC

CdTe Solar Cells

Grain boundaries and interface recombination appear to be the most significant limits!

Virtual Chalcogenide PV Conference 2020 May 26th, 2020

JEOL JEM-ARM 200CF at UIC

- Cold field emission (0.35 eV resolution)
- Probe spherical aberration corrector (less than 70pm spatial resolution)
- Oxford XMax100TLE
- HAADF detectors, BF detector and ABF detector
- Heating, Cooling, Liquid, STM, Vacuum Transfer and Tomography stages.
- Gatan Continuum GIF

Virtual Chalcogenide PV Conference 2

26th. 2020

CdTe Bi-Crystals

IR image of bi-crystal

Schematic of bi-crystal

1	•CdTe			
<u>L</u>		Bonded inte	erface	
	•CdTe			

Image of bi-crystal

Jinglong Guo in collaboration with M. Chan (ANL) Moon Kim (UT Dallas), A. Rocket (CSM) ad M. Nardone (BGSU) Wirtual Chalcogenide PV Conference 2020 May 26th, 2020

- CdTe (111) wafers
 - [112]₁//[011]₂
 - **[0-11]**₁//[01-1]₂
 - [0-11]₁//[0-11]₂
 - Small angle (5^o) Tilt
 - Small angle (2º) Tilt
- CdTe (110) wafers
 - [1-1-2]₁//[-111]₂
 - Small angle (4^o) Tilt
- \circ CdTe (100) wafers
 - [011]₁//[011]₂
- CdTe (211) wafers
 - [0-11]₁//[01-1]₂
- CdZnTe (111) wafers
 - [0-11]₁//[011]₂
- CdTe (100)/CdTe(110)
 - [0-11]₁//[-111]₂
- CdS (001)/CdTe (111)

AGO

the second second

Statistics of the second secon

0

SITY

AGO

CdTe Bi-Crystals

 $E-E_{F}$ (eV)

and the second second second

CdTe Grain Boundaries

Automate the matching of experimental and computed images

NUMBER OF STREET

05

CdTe Modeling

Original STEM GB image

Convolution image simulation

Overlay

Int_1
Int_2
Bulk_1
Bulk_2

Virtual Chalcogenide PV Conference 2020 May 26th, 2020

CdTe Modeling

- Cl , Se can passivate defect states in the mid-gap.
- Cl and Se segregation of dopants to grain boundaries is thermodynamically favorable.

May 26th, 2020

Co-doping Se+Cl further reduces mid-gap states when substituted to dislocation core.
 Virtual Chalcogenide PV Conference 2020

のないないないないの

State of the second sec

-

Imaging CdSeTe Devices

Cross-section ABF image of CdTe cell

Atomic resolution HAADF image of grain boundaries in CdSeTe solar cell

のないないないないの

004

and the second second

Imaging CdSeTe Devices

Atomic structure of CdSeTe grain boundaries unaffected by alloying.

Virtual Chalcogenide PV Conference 2020 May 26th, 2020

的第三人称单数 计算机 化合金 化合金

And the second se

05

Grain boundary effects

- Cl and Se co-passivate grain boundaries
- Increase in carrier lifetime

"Effect of selenium and chlorine co-passivation in polycrystalline CdSeTe devices," Guo, J.L., A. Mannodi-Kanakkithodi, F.G. Sen, E. Schwenker, E.S. Barnard, A. Munshi, W. Sampath, M.K.Y. Chan, and R.F. Klie, *Applied Physics Letters*, **115(15)**, (2019)

Group V doping in CdTe

As-doped CdTe (10²⁰ cm⁻³) Efficiency : less than 2%

As-doped CdTe (10¹⁸ cm⁻³) Efficiency : 17%~20%

 Baseline CdTe (no As)
 Efficiency : 1

1 4

- Increasing of As doping results in smaller grain size.
- More grain boundaries and dislocations cores.
- More Σ3 boundaries, and more dislocation cores.

のないないないない

W. C. C. S. S. S. S. S. S. S. S. S.

Group V Doping in CdSeTe

- XEDS shows small As signal indicating uniform As distribution in CdSeTe.
- No As-clusters are found.

のためになったのである

STATISTICS IN CONTRACTOR

Conclusions

- Model systems are used to determine grain boundary structures.
- Co-passivation for Se and Cl is found to be effective in increasing lifetimes in CdTe devices.
- Group V doping was demonstrated in CdSeTe devices.
- Grain morphology is affected in Group-V doped CdTe devices.

Questions?

