Fermi energy limits in Cu-oxides

Alternative Title:

About the difficulties to achieve high photovoltages and conversion efficiencies with CuO and other Cu-oxides

Andreas Klein¹, Dominic Moritz¹, Katharina Schuldt¹, Issei Suzuki²

¹ Technische Universität Darmstadt, Materials Science, Darmstadt, Germany

² Tohoku University, Multidisciplinary Research for Advanced Materials, Sendai, Japan

Cu-oxides for solar cells

Cu_2O

direct band gap: 2.3 eV

CuO

direct gap: 1.5-1.7 eV

indirect gap: 1.2 eV

β-CuGaO₂

direct gap: 1.5 eV

absorption: $>10^5$ /cm

Photovoltage lower than for good solar cells systems

Low photocurrent and low photovoltage

No PV properties published yet

The Fermi energy in ionic semiconductors

The Fermi energy in a material is determined by charge neutrality

- Charge neutrality in covalent semiconductors: $n + N_A^- = p + N_D^+$
- Charge neutrality in ionic semiconductors includes additional defects:

$$[h] + k[D^{k+}] + l[D^{l+}_{intr}] + [Cat^{+}_{cat}] + [An^{+}_{An}] = [e] + m[A^{m-}] + n[A^{n-}_{intr}] + [Cat^{-}_{cat}]$$

Positive charges

- Free holes
- Extrinsic donors
- Intrinsic donors

 (anion vacancies, cation interstitials)
- Trapped holes

Negative charges

- Free electrons
- Extrinsic acceptors
- Intrinsic acceptors
 (cation vacancies, anion interstitials)
- Trapped electrons

Limitation of the Fermi energy in ionic semiconductors

The photovoltage of a solar cell is determined by the splitting of the quasi Fermi levels under illumination

Intrinsic defects

Charge trapping

- The formation of compensating defects requires exchange of species, which can happen during synthesis at elevated T, but is typically suppressed at room temperature (operating conditions)
- On the contrary, charge trapping can occur at any temperature when charges are introduced into the valence or conduction by absorption or injection
- Charge trapping can limit the variation (splitting) of the Fermi energy

Experimental setup

Cluster tool DAISY-MAT

> in-situ deposition and processing

X-ray Photoelectron spectroscopy

- direct determination of Fermi energy
- > direct determination of Cu oxidation state

How to find the limits of E_F (e.g. Fe_2O_3)

I. Doping: Mg, Si, Zr

III. Interfaces: RuO₂, NiO, ITO

Similar limits of Fermi energy for doped and treated Fe₂O₃ and at interfaces

Water exposure to CuO

- Water adsorption leads to an upward shift of the Fermi energy
 - → also observed for SnO₂, ZnO, NiO, Fe₂O₃, BiVO₄, CuFeO₂, BiFeO₃, ...
- The intensity of the Cu^{2+} satellite intensity of slightly reduced \rightarrow partial reduction of Cu

CuO/ITO interface formation

- upward shift of the Fermi energy
- narrowing of the Cu 2p emission
- reduction of Cu²⁺ satellite intensity

$$Cu^{2+} \rightarrow Cu^{1+}$$

- Upper limit of Fermi energy by electrochemical reduction of Cu
- Corresponds to electron trapping at Cu²⁺ sites

Summary

^{*} Suzuki et al (submitted)