Study of wormlike defects induced by shading on a commercial Cu(In,Ga)(S,Se)₂ module

R. Aninat, G. Campillay Ott, L. Jouard, K. Bakker, M. Theelen

About our institute

TNO part of Solliance: 3 Research Programs

Introduction:

wormlike defects creation

(relevant literature here [1-7])

[1] Bakker, K., et al. (2019). IEEE J. Photovoltaics 9(6): 1868-1872.
[2] Bakker, K., et al. (2019). J. Mat. Res. 34(24): 3977-3987.
[3] Bakker, K., et al. (2020). Sol. Mat. 205: 110249.
[4] Palmiotti, E., et al. (2018). Solar En. 161: 1-5.

[5] Johnston, S., et al. (2018). 2018 IEEE WCPEC
[6] Johnston, S., et al. (2017). 2017 IEEE PVSC
[7] Lee, J. E., et al. (2016). PIP, 24(8): 1035-1043

Partial shading

Partial shading

Partial shading

What is it?

Two extreme scenarios

Partial shading

What is it?

"Landscape" shading:

Best case scenario

Partial shading

What is it?

"Portrait" shading

Partial shading

Load [©]

Uniform illum.

Load ^(D)

≹R_{Sh}/

Θ

тсо Θ

Θ

TCO O

Мо

∕ **▼** ≱R_{sh}|

Partial shading

innovation for life

What is it?

"Portrait" shading

Worst case scenario

* ILIT: Illuminated lock-in thermography

Partial shading

What is it?

Wormlike defects

What is our approach?

Scale down

Partial shading

What is it?

Wormlike defects

What is our approach?

Scale down

Partial shading

Partial shading Load [©] Shaded TCO O **Unshaded** Residential Shaded Uniform illum. Θ Load тсо О . ▼ ≹R_{sh}∣ Unshaded Мо BIPV innovation for life

What is it?

Wormlike defects

What is our approach?

Scale down

S

SOLLIANCE

- Initial steps:
 - Select commercial module
 - EL on full module

- Initial steps:
 - Select commercial module
 - o EL on full module
- Stress:
 - Partial shading at Jsc
 - Reverse bias on shaded cells
 - Wormlike defect generation

Partially shaded circuit of 2 cells

- Initial steps:
 - Select commercial module
 - o EL on full module
- Stress:
 - o Partial shading
 - Reverse bias on shaded cells
 - Wormlike defect generation
- Select and prepare the samples:
 - EL on full module

- Initial steps:
 - Select commercial module
 - o EL on full module
- Stress:
 - o Partial shading
 - Reverse bias on shaded cells
 - Wormlike defect generation
- Select and prepare the samples:
 - EL on full module
 - Locate generated defects

- Initial steps:
 - Select commercial module
 - o EL on full module
- Stress:
 - o Partial shading
 - Reverse bias on shaded cells
 - Wormlike defect generation
- Select and prepare the samples:
 - EL on full module
 - Locate generated defects
 - Core the samples (wormy & worm-free)

Sample NW (worm-free)

Sample W (*"wormy" area*)

- Initial steps:
 - o Select commercial module
 - o EL on full module
- Stress:
 - o Partial shading
 - Reverse bias on shaded cells
 - Wormlike defect generation
- Select and prepare the samples:
 - EL on full module
 - Locate generated defects
 - Core the samples (wormy & worm-free)
 - Unpackage the samples

1. As-cored

- Initial steps:
 - Select commercial module
 - o EL on full module
- Stress:
 - o Partial shading
 - Reverse bias on shaded cells
 - Wormlike defect generation
- Select and prepare the samples:
 - EL on full module
 - Locate generated defects
 - Core the samples (wormy & worm-free)
 - Unpackage the samples

1. As-cored

2. After front SLG removal

Encapsulant

TCO

CIGS

- Initial steps:
 - Select commercial module
 - o EL on full module
- Stress:
 - Partial shading
 - Reverse bias on shaded cells
 - Wormlike defect generation
- Select and prepare the samples:
 - EL on full module
 - Locate generated defects
 - Core the samples (wormy & worm-free)
 - Unpackage the samples

- Initial steps:
 - Select commercial module
 - o EL on full module
- Stress:
 - o Partial shading
 - Reverse bias on shaded cells
 - o Wormlike defect generation
- Select and prepare the samples:
 - EL on full module
 - Locate generated defects
 - Core the samples (wormy & worm-free)
 - Unpackage the samples
- Characterise the samples:
 - PL, ILIT, I-V, SEM, etc...

Results: Reference sample NW

Core NW (*worm-free*)

Results: Reference sample NW

Core NW (*worm-free*)

Results: Reference sample NW

Core NW (*worm-free*)

Good performance of the reference sample

 \rightarrow The coring and unpackaging did little to no damage to the active layers

- The worms cause strong shunting

- Wormlike defects
 protrude by 0.5 µm 1.0
 µm
- More continuous worm ridge than [1], likely due to TCO thickness

[1] Bakker, K., et al. (2020). Sol. Mat. 205: 110249.

Photoluminescence imaging before/after TCO etch

Photoluminescence imaging before/after TCO etch

Photoluminescence imaging before/after TCO etch

"wormy" sample: ascetic acid etching

LLIANCE

Upon TCO etching:

- No longer shunting in PL (for explanation, see [1])
- Etched worm are porous due to expansion

[1] Bakker, K., et al. (2019). IEEE Journal of Photovoltaics 9(6): 1868-1872.

"wormy" sample: Raman

"wormy" sample: Raman

"wormy" sample: Raman

SOLLIANCE

o innovation for life

"wormy" sample: Raman vs SEM/EDS

- Raman & EDS both show increased S/Se ratio near worm edge, as in [1]
- Worm morphology similar to reported wormlike defects

[1] Bakker, K., et al. (2019). IEEE J. Photovoltaics 9(6): 1868-1872

Virtual Chalcogenide PV Conference May 2020

37

Conclusion

- 1. Wormlike defects were generated by controlled partial shading in a commercial module
- 2. Samples were extracted from the module without damage to the active layers, usable for electrical and material characterisation
- 3. The samples with wormlike defects was etched and studied:
 - a. the wormlike defects are porous and protrude from the surface by ${\approx}1\mu m$
 - b. An increase of the sulphur content is observed at the edge of the worm, both by Raman and EDS

4. Results are comparable to lab scale results published in the past

Thanks!

I'd be happy to hear (or read) you questions

