

The importance of contact pattern in passivation layers for ultrathin Cu(In,Ga)Se, solar cells

K. Oliveira, J. M. V. Cunha, J. Lontchi, D. Flandre, T. S. Lopes, M. A. Curado, S. Bose, W.C. Chen, J. R. S. Barbosa, A. J. N. Oliveira, A. Hultqvist; M. Edoff, J. P. Teixeira, P. A. Fernandes and P. M. P. Salomé

UNIVERSITET

Pedro Salomé

Nanofabrication for Optoelectronic Applications - INL

www.inl.int

Ultrathin devices require passivation of back contact

Several materials, contacts and fabrication show different outcome

Line Contacts Point contacts Tunnelling barriers Lift-off Approaches Optical Lithography E-Beam Lithography Nano-imprint

Materials: Al₂O₃; SiO₂; HfO₂; etc

Nanofabrication of line and point contacts Optical and e-beam lithography

Line contacts: Passivation area 60%; 2.8 µm Pitch Point contacts: Passivation area 99%; 2 µm Pitch

J-V analysis

Both patterns improve efficiency but with different benefits

Device	V _{oc} (mV)	EQE corrected J _{sc} (mA/cm ²)	FF (%)	Eff. (%)
Ref	585 ± 7	22.50 ± 0.44	66.9 ± 1.3	8.8 ± 0.4
Point Contacts	653 ± 13	24.23 ± 0.67	66.6 ± 2.6	10.5 ± 0.7
Line Contacts	639 ± 7	23.80 ± 0.21	74.7 ± 0.8	11.4 ± 0.2

CIGS thickness 700 nm Ga-flat profile 18 nm SiOx

Pedro Salomé – NOA/INL – Pedro.salome@inl.int www.inl.int

Na distribution and admittance GDOES and Admittance give contradictory results

Na profile by glow discharge optical emission spectroscopy

Na distribution and admittance GDOES and Admittance give contradictory results

400

Na profile by glow discharge optical emission spectroscopy

Device	ω (nm)	N _{cv} (cm⁻³)
Ref	364 ± 35	(3.3 ± 0.4) x10 ¹⁶
Point Contacts	228 ± 35	(20 ± 8) x10 ¹⁶
Line Contacts	298 ± 7	(4.1 ± 0.4) x10 ¹⁶

2D Simulations

Optimization heavily depends on CIGS and passivation properties

Pedro Salomé – NOA/INL – Pedro.salome@inl.int www.inl.int

Comparison with graded profile and ACIGS

Grading provides more variability to references but also helps passivation

Device	V _{oc} (mV)	QE corr. J _{sc} (mA/cm²)	FF (%)	Eff. (%) QE corr.
REF	621±85	25.63 ± 0.41	50.54 ± 15.82	8.83 ± 3.03
P-8 nm SiO _x	726 ± 3	26.20 ± 0.29	77.69 ± 0.23	14.77 ± 0.18
P-25 nm SiO _x	731 ±5	26.10 ± 0.44	73.10 ± 11.05	14.66 ± 0.17

ACIGS: 730 nm; linear Ga profile

Comparison with best of CIGS

V_{oc} and FF on par with WR J_{sc} still has electrical and optical loss

	Voc (mV)	J _{sc} , simulated (mA/cm²)	FF (%)	Eff (%)	ΔJ _{sc}	E _g -V _{oc} (meV)
ZSW E _g = 1.11	741	37.8, 39.95	80.6	22.6	2.15	369
This work (best cell) E _g =1.23*	744	26.91, 30.62	77.2	15.5	3.71	486

No PDT, No AR, no back reflection increase *bandgap estimated from composition, not EQE

Reference ZSW: Philip Jackson et al, P hys. Status Solidi RRL, 1–4 (2016) / DOI 10.1002/pssr.201600199

Pedro Salomé – NOA/INL – Pedro.salome@inl.int www.inl.int

Solutions for performance increase Individual solutions and integration with SiO_x is on-going

INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY

Decoupling of Optical and Electrical Properties of Rear Contact CIGS Solar Cells

Effect of PDT and passivation

Analysis of lower bulk recombination channels for ultrathin devices

Pedro Salomé – NOA/INL – Pedro.salome@inl.int www.inl.int

https://inl.int/micro-nanofabrication/nanofabicationoptoelectronic-applications/ ARCIGS-M Consortium

NOA group at INL

P.M.P. Salomé Advanced Materials Interfaces, Volume 5, Issue 2, January 23, 2018 S. Bose et al, Thin Solid Films 671, pp. 77-84.

J. M. V. Cunha et al, IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 8, NO. 5, SEPTEMBER 2018.

730 nm CIGS with SiOx passivated rear contact - 15.5 % eff

	Voc (mV)	J _{sc} (mA/cm²)	FF (%)	Eff (%)	E _g -V _{oc} (meV)
This work (best cell) E _g =1.23*	744	26.91	77.2	15.5	486

Thank you for listening!

