

25th - 28th May 2020 |Online

Advanced electrical characterization of ultra-thin CIGS solar cells in the dark

J. Lontchi^{1*}, W.C. Chen², J. R. S. Barbosa², M. Edoff², K. Oliveira³, J. M. V. Cunha³, P. M. P. Salomé³, M. Simor⁴, P. J. Bolt⁴, D. Flandre¹

¹Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.

²Ångström Laboratory, Ångström Solar Center, Uppsala University, SE-751 21 Uppsala, Sweden.

³International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330, Braga, Portugal.

⁴TNO, Solar Technology and Applications, High Tech Campus 21, 5656 AE, Eindhoven, the Netherlands.

*corresponding author: Jackson Lontchi (jackson.lontchi@uclouvain.be)

25th - 28th May 2020 |Online

> Abstract

The objective of this work is to show how electrical characterizations in the dark supported by simulations can provide sensitive analyses to understand different gains or losses of performances in ultra-thin CIGS PV cells after different optimization and how they can provide useful information to the process for improvement.

> Outline

- We will consider 3 series of experiments using 500nm thin-CIGS absorbers with/without grading on Mo, on Al₂O₃ passivation or on SLG/steel substrates

- For each, the parameters of I-V measurements in the dark will be correlated with the performances under illumination.

- However each will show that to understand some **degradation mechanisms**, **capacitance-voltage measurements** are also required, as well as the **help of simulations** to carefully and correctly interpret the origin of the defects, with the final objective to optimize the performances of the cells.

vCPVC2020: Advanced electrical characterization of ultra-thin CIGS solar cells in the dark

www.arcigs-m.eu | jackson.lontchi@uclouvain.be

 $N_{cv} =$

25th - 28th May 2020 |Online

UCLouvain INU **D** innovation for life

Characterization details

The dark *I-V* measurements were performed at UCLouvain

Shielded low signal PM8PS probe station + *Keithley B1500a semiconductor device analyzer*

Controlled temperature 25°C, in the dark

I-V measurement (4 wires configuration) 4 SMU up to 100 mA, 10 fA resolution

2 SMU from 1 KHz to 5 MHz with 0.1 fF resolution

CV measurement

vCPVC2020: Advanced electrical characterization of ultra-thin CIGS solar cells in the dark

www.arcigs-m.eu | jackson.lontchi@uclouvain.be

25th - 28th May 2020 |Online

Characterization results: current - voltage (J-V) Mo/CIGS vs Mo/Al₂O₃/CIGS

Electrical		D	ark parar	neters			Param	eters unde	r illuminatio	n*
parameters	J ₀₁ (mA/cm ²)	J ₀₂ (mA/cm ²)	n1	n ₂	R _s (Ω.cm ²)	R _{sh} (Ω.cm ²)	J _{sc} (mA/cm ²)	V _{oc} (V)	FF (%)	Eff (%)
Mo/CIGS	7.13E-05	2.06E-02	2.02	5.63	0.69	2.11E+03	21.4	573.1	66.5	8.15
Mo/Al ₂ O ₃	4.20E-05	• 6.68E-03	2.12	3.68	1.84	3.86E+03	• 24.3	• 609.1	64.7	9.50

*B. Sourav et al. Thin Solid Films 671 (2019) 77-84

25th - 28th May 2020 |Online

Characterization results: capacitance - voltage (C-V) Mo/CIGS vs Mo/Al₂O₃/CIGS

$\boldsymbol{V_{oc}} = \frac{nkT}{q} \ln \left[-\frac{1}{q} + \frac{1}{q} + \frac{1}{q$	$\frac{(\mathbf{N}_{\mathbf{A}} + \Delta n)\Delta n}{n_i^2} \bigg]$
$C^{-2} = \frac{2(V)}{q}$	$\frac{V_{bi} - V_{dc}}{\varepsilon A^2 N_A}$

Electrical	Dark	paramete	ers	Paramet	ers unde	r illumina	ation*
parameters	N _{app(0 V)} (cm ⁻³)	X (nm)	V _{bi (0 V)} (eV)	J _{sc} (mA/cm²)	V _{oc} (V)	FF (%)	Eff (%)
Mo/CIGS	2.30E16	217.41	0.76	21.4	573.1	66.5	8.15
Mo/Al ₂ O ₃ /CIGS	2.70E16	244.72	1.07	24.3	609.1	64.7	9.50
			**			0 - 4 (0)	

*B. Sourav et al. Thin Solid Films 671 (2019) 77-84

25th - 28th May 2020 |Online

ATLAS 2D Simulation: current - voltage

Mo/CIGS vs Mo/Al₂O₃/CIGS

Without R_{sh}

Electrical		Dark pai	rameters			Paran	neters unde	er illuminatio	on
parameters	J ₀₁ (mA/cm²)	J ₀₂ (mA/cm²)	n1	n ₂	R _s (Ω.cm ²)	J _{sc} (mA/cm ²)	V _{oc} (V)	FF (%)	Eff (%)
Mo/CIGS	3.70E-05	2.40E-04	1.21	1.64	0.83	26.62	659.79	76.15	13.38
Mo/Al ₂ O ₃		4.02E-05	1.45	1.92	2.14	+ 28.13	† 700.74	72.75	14.34

25th - 28th May 2020 |Online

Characterization results : current - voltage (J-V) SLG/Mo vs Steel/Mo

Electrical		l	Dark para	meters			Param	eters unde	r illuminati	ion
parameters	J ₀₁ (mA/cm²)	J ₀₂ (mA/cm²)	n ₁	n ₂	R _s (Ω.cm²)	R _{sh} (Ω.cm ²)	J _{sc} (mA/cm ²)	V _{oc} (V)	FF (%)	Eff (%)
SLG/Mo	2.37E-06	3.79E-06	1.62	1.91	1.77	3.23E+05	23.61	0.674	74.20	11.78
Steel/Mo	↓ 2.19E-04	• 2.02E-02	2.27	5.15	3.46	1.59E+03	22.78	• 0.641	73.85	10.78

25th - 28th May 2020 |Online

Characterization results : capacitance - voltage (C-V) SLG/Mo vs Steel/Mo

Another approach to decouple N_a and N_t is necessary

nkT	$\left[(\mathbf{N}_{\mathbf{A}} + \Delta n)\Delta n\right]$
$\mathbf{v}_{oc} =q ln$	$\begin{bmatrix} n_i^2 \end{bmatrix}$

Electrical	Dark	k parameter	S	Parame	ters unde	er illumin	ation
parameters	N _{app(0 V)} (cm ⁻³)	X (nm)	V _{bi (0 V)} (eV)	J _{sc} (mA/cm²)	V _{oc} (V)	FF (%)	Eff (%)
SLG/Mo	2.30E16	257.20	1.41	23.61	0.674	74.20	11.78
Steel/Mo	1.12E17	215.64	2.52	22.78	0.641	73.85	10.78

25th - 28th May 2020 |Online

vCPVC2020: Advanced electrical characterization of ultra-thin CIGS solar cells in the dark

www.arcigs-m.eu | jackson.lontchi@uclouvain.be

ARCIG

UPPSALA UNIVERSITET

UCLouvain INU

25th - 28th May 2020 |Online

Current-Voltage		[Dark para	meters			Param	eters unde	er illuminat	ion
parameters	J ₀₁ (mA/cm²)	J ₀₂ (mA/cm²)	n ₁	n ₂	R _s (Ω.cm ²)	R _{sh} (Ω.cm ²)	J _{sc} (mA/cm ²)	V _{oc} (V)	FF (%)	Eff (%)
N GGI	3.20E-06	3.81E-06	1.69	2.00	2.45	6.21E+06	25.22	667	73.39	12.69
G⁺ GGI	2.23E-05	2.28E-05	1.98	1.43	2.17	1.76E+05	25.86	663	70.83	12.14
G ⁻ GGI	2.25E-05	6.80E-03	2.00	4.43	2.52	2.62E+03	24.78	674	71.70	11.98
F GGI	1.18E-05	2.65E-03	1.78	4.75	2.65	1.26E+04	23.51	592	53.71	7.48

25th - 28th May 2020 |Online

> Characterization results : capacitance - voltage (C-V) Grading effects

Capacitance-Voltage	Dark p	aramete	rs	Param	eters und	er illumina	tion
parameters	N _{app(0 V)} (cm ⁻³)	X (nm)	V _{bi} (eV)	J _{sc} (mA/cm²)	V _{oc} (V)	FF (%)	Eff (%)
N GGI	3.44E+16	318	1.94	25.22	667	73.39	12.69
G ⁺ GGI	3.05E+16	334	2.26	25.86	663	70.83	12.14
G ⁻ GGI	5.23E+16	264	2.10	24.78	674	71.70	11.98
F GGI	7.30E+15	506	0.95	23.51	592	53.71	7.48

$$\boldsymbol{V_{oc}} = \frac{nkT}{q} ln \left[\frac{(\boldsymbol{N_A} + \Delta n)\Delta n}{n_i^2} \right]$$

25th - 28th May 2020 |Online

25th - 28th May 2020 |Online

Summary: characterization vs simulation (I-V, C-V) methodology toward optimization of UT-CIGS PV cells

Mechanism	Parameters in the dark	I-V	C-V	SIMU
		Higher perf	formances under illu	mination
Rear passivation	Lower of J ₀₁ , J ₀₂ , n ₁ , n ₂	\checkmark		\checkmark
Rear contact patterning	Opening W, pitch P			\checkmark
Grading CIGS	Lower J ₀₂ , n ₂ , Increase of N _a	\checkmark	\checkmark	
		Lower perf	ormances under illu	mination
Steel substrate	Defects due to substrate N _t	Lower perf ✓	ormances under illu	mination
Steel substrate Bulk absorber defects	Defects due to substrate N _t Trap defects N _t	Lower perf ✓	ormances under illu	mination √
Steel substrate Bulk absorber defects Series/shunt resistance	Defects due to substrate N _t Trap defects N _t High R _s , Low R _{sh}	Lower perf ✓ ✓	ormances under illu ✓ ✓	mination √

UCLouvain

THANK YOU!