CuGaSe₂ / c-Si Tandem solar cell exceeding 1 Volt V_{oc} with passivating tunnel junction

A. Rivalland¹, C. Seron², P. Bellanger², S. Dubois², L. Arzel¹, N. Barreau¹

¹Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France ²CEA, Liten, INES, 73375 Le Bourget-du-Lac, France

contact@: adrien.rivalland@cnrs-imn.fr

www.cnrs-imn.fr

Introduction & Context

CuGaSe₂ (CGSe) growth studies

CuGaSe₂ / c-Si tandem solar cell

Conclusion

CONTEXT: toward a tandem industry

Conversion efficiency road map for c-Si based solar modules

Market share prediction for c-Si based solar modules

Different cell technology

I. Gordon, presentation at Les Houches School of Physics, 2018 ITRPV, 2020

CONTEXT: CGSe close to be ideal

CGSe :

- record efficiency = 11.9%¹ (Univ. Uppsala)
- top cell required efficiency (tandem >25%) = $13.5\%^2$

Improve the CGSe crystaline quality
Use a better candidate as buffer layer
Optimize as top cell on silicon or TCO for 2-T tandem cell

¹ F. Larsson et al., Prog. Photovoltaics Res. Appl., 2017. ² T. P. White, N. Lal, K. Catchpole, IEEE J. Photovoltaics, 2014.

Top-cell: CGSe growth studies

Deposition on c-Si Surface roughness effects

Analysis: SEM images

Surface roughness effects

KOH-polished wafer or mirror-polished wafer:

OBSERVATION: good morphology:

- no cracks,
- uniform thin film,
- large grains,
- good adhesion

Surface roughness effects

KOH-textured Silicon wafer

OBSERVATION:

nes

Cez

- voids,
- non-uniformity
- small grains,
- poor adhesion

Surface roughness effects

KOH-textured Silicon wafer

OBSERVATION:

Cez

- voids,
- non-uniformity
- small grains,
- poor adhesion

Deposition on c-Si / ITO

OBSERVATION: good morphology:

Ines

Cez

- no craks,
- uniform thin film,
- large grains,
- no adhesion problem

Conclusions on growth condition

With KOH-polished Si wafer

CGSe on Si

Conclusions on growth condition

CGSe / c-Si tandem solar cell

p-type c-Si (bottom cell absorber) p-type c-Si (bottom cell absorber)

ITO recombination layer

n⁺ Si (emitter)

p-type c-Si (bottom cell absorber)

n⁺ Si (emitter)

p-type c-Si (bottom cell absorber)

ITO recombination layer

ITO recombination layer

ITO recombination layer

p-type c-Si (bottom cell absorber)

> p⁺ poly-Si (BSF) Ag Back Contact

ITO recombination layer

Si bottom cell

Si bottom cell

Results

Higher J_{SC} and efficiency with tunnel junction

cea

UNIVERSITÉ DE NANTES

Ines

Chrs

	V _{oc} (V)	J _{sc} (mA∕cm²)	FF (%)	Eff. (%)
ITO	1.15	8.0	56.5	5.2
tunnel	1.15	15.1	43.7	7.6

Results

Results

Interpretation:

- formation of a GaOx interface

Tandem cell with ITO degradation

Tandem cell with ITO CGSe back contact : lower carrier collect

Tandem cell with ITO degradation

Tandem cell with ITO CGSe back contact : lower carrier collect

ITO / CGSe interface : Formation of a GaOx interface

Conclusions & Perspectives

Tandem developments:

 Two fonctional tandem architectures had been made: with
ITO and with tunnel junction

- Tunnel: proof of concept and higher tandem efficiency
- → ITO: further development to avoid GaOx formation

Thank you for your attention

Tunnel junction analysis by ECV

