

Magnetization dynamics in lanthanides new frontiers in spin-dependent band mapping at BESSY^{VSR}

Martin Weinelt

Photon flux

Freie Universität Berlin

Ti:Sa	
-------	--

UV 10 mW

BESSY

10¹³ photons / s (@ 0.1A, 0.1% BW)

HHG

86 MHz, 0.1 nJ	500 MHz	10 kHz
10 ⁹ photons / pulse	10 ⁵ photons / pulse	10 ⁵ photons / pulse
80 MHz pump, 1 nJ	1.25 MHz	pump, 500 μJ ~ J / cm ²
10 ¹⁷ photons / s, 50 fs	10 ¹¹ photons / s, 3 ps 10 ⁹ photons / s, 700 fs	10 ⁹ photons / s, 100 fs

Space-charge problem:

S. Passlack et al., J. Appl. Phys. 100 (2006) 024912.

limit at $E_{kin} \sim 80 \text{ eV}$: 10⁷ photons / pulse A. Pietzsch et al., New J. Phys. 10 (2008) 033004.

Freie Universität

Our Goal:

Follow the signatures of "phase transitions" in the <u>transient</u> electronic band structure

Our BESSY^{VSR} Goal:

Spin- and time-resolved ARPES

Freie Universität

Coherent rotation of magnetization: "precessional switching" > 10 ps

Conventional switching: Domain-wall

nucleation and propagation > 1 ns

Laser-induced magnetic switching !

I. Radu et al., Nature 472 (2011) 205. T.A. Ostler et al., Nature Communications 3 (2012) 666.

Time

ns

ps

fs

N

Spin polarization

A. Vaterlaus et al., Phys. Rev. B 46 (1992) 5280

Freie Universität

Femtosecond magnetization dynamics

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot., Phys. Rev. Lett. 76 (1996) 4250

Freie Universität

S.I. Anisimov et al., Sov. Phys. JETP **39**, (1974) 375 A. Vaterlaus et al., Phys. Rev. Lett. **67** (1991) 3314 E. Beaurepaire et al.; Phys. Rev. Lett. **76** (1996) 4250

Freie Universität

Higher harmonic spectrum of Argon

Freie Universität

XUV sensitive silicon photodiode (AXUV100)

VUV photoemission beamline

MB

35 eV XUV-pulse, 100 fs pulse duration, 150 meV energy resolution, 10⁸ photons/s

Rev. Sci. Instrum. 84 (2013) 075106

Freie Universität

Pulse broadening Freie Universität C∆t **Pulse tilt**

O.E. Martinez, Opt. Comm. 59 (1986) 229

large IR focal length: 600 mm small divergence of VUV beam: 4 mrad slit - grating distance: 330 mm 200 lines / mm

Pulse broadening (35 nm):

 $\Delta t \simeq N \cdot \lambda / c$ decrease in bandwith:

 $N = \text{spot size} \cdot \text{lines/mm}$

 $\Delta t \propto \lambda^3 \cdot N^2$ Group-velocity dispersion:

Energy - chirp:

Berlin

~ 90 fs

~ 8 fs

~ 30 meV

Ray tracing

Olaf Schwarzkopf, Helmholtz Zentrum Berlin REFLEC CODE, F. Schäfers, Technical Report 201, BESSY, (1996)

Electronic Structure of Gd

0

2

3

0.5

Binding energy / eV

Gd: (5d6s)³ exchange splitting

Parallel momentum /Å⁻¹

Space charge @ 35 eV

XUV probe-pulse

IR pump-pulse

Freie Universität

Berlin

35 eV XUV-pulse, 100 fs pulse duration, 150 meV energy resolution, 10⁸ photons/s

0.5 electrons/pulse @ 10 kHz repetition rate

(5d6s)³ Exchange Splitting

Freie Universität

Gd / W(110)

 Δ_2 majority spin bulk-band

 $\Delta_{\rm 2}$ minority spin bulk-band

exchange splitting Δ_{ex}

C. Schüßler-Langeheine, PhD thesis, FU Berlin, 1999

Ultrafast Demagnetization of Gd

PRL 109, 057401 (2012)

Gd: band position vs exchange splitting

Exchange splitting (eV)

Freie Universität

Ultrafast Demagn.: Hysteresis Loop

Binding energy minority component (eV) Binding energy majority component (eV) 75ps 1.95 .35 2ps 2.00 .40 2.05 .45 500ps 0.6ps .6ps 2.10 electronic demagnetization 1.50 thermal recovery 0ps 0.75 0.70 0.65 0.55 0.60 0.50

Hysteresis: valence and 4f spins not in equilibrium during demagnetization

- Instantaneous response of minority spin band
- 1 ps delayed response of the majority spin band

FEMTOMAGNETISM – BESSY VSR

PRL 109, 057401 (2012)

Three Temperature Model

Beaurepaire *et al.* PRL **76** (1996) 4250 Hübner, Bennemann PRB **53** (1996) 3422

a) Superdiffusive spin transport

Battiato *et al.*, PRL **105** (2010) 027203 Rudolf *et al.*, Nature Comm. **3** (2012) 1037

b) Electron-phonon spin-flip scattering Koopmans *et al.*, Nature Mat. **9** (2010) 259

Magnetic Linear Dichroism (MLD)

O. Krupin, PhD-Thesis (2004), FU-Berlin

- towards a complete picture ...

4f spins valence spins exchange (5d6s)³ spin currents τ_{SL} $au_{e,ph}$ Electrons Lattice l_e (p

Freie Universität

Binding energy (eV)

Freie Universität

AG Weinelt, FU-Berlin

Robert Carley Björn Frietsch Martin Teichmann

John Bowlan Kristian Döbrich Jan Wolter

Collaboration Partners

Phillipe Wernet, Olaf Schwarzkopf Helmholtz Zentrum Berlin

Christian Tusche Max-Planck-Institut für Mikrostrukturphysik, Halle

Gerd Schönhense Johannes Gutenberg Universität Mainz

Max Born Institute

Alexander von Humboldt

Stiftung/Foundation

DinL

LEIBNIZ GRADUATE-SCHOOL DYNAMICS IN NEW LIGHT

Bundesministerium für Bildung und Forschung

Dynamic Pathways in Multidimensional Landscapes

