

Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin

The 30 x 30 cm² R&D baseline for high efficiency CIGS thin-film modules at PVcomB

B. Rau^{1*}, C. Boit², S. Cinque¹, F. Budack¹, I. Dorbandt¹, F. Fink³, F. Friedrich², T. Hänel¹, M. Hartig², C. Köble¹, S. Merdes¹, N. Papathanasiou¹, C. Schultz³, M. Schüle³, B. Szyszka², C. Wolf¹, F. Ziem¹, and R. Schlatmann^{1,3} ¹Helmholtz-Zentrum Berlin für Materialien und Energie GmbH / PVcomB, Berlin, Germany; ²Technische Universität Berlin / PVcomB, Germany; ³University of Applied Sciences (HTW) Berlin / PVcomB, Germany ^{*}Corresponding author: bjoern.rau@pvcomb.de

Our Mission

- Technology transfer from innovative lab sized solar cell concepts to industrially produced modules and vice versa.
- Two R&D reference lines CIGS (this presentation) and a-Si/μc-Si (see 3DV.2.36) for 30 x 30 cm² glass modules.
- Whole process chain from glass washing to module encapsulation.
- Sequential processing for CIGS absorber formation
- Advanced tools for *in situ* and *ex situ* process analytics and high level device characterization.

Glass cleaning

ed PVcomB bridges the gap between fundamental science and industrial appliction Technology transfer Hands-on Education Upscaling of promising concepts Development of industrial Processes Basic Research Photovoltaics programs of the Helmholtz Gemeinschaft (Berlin, Jülich) Mathematics for key technologies, high-end analytics Etablished Education programs (BSc und Master) at TU Berlin and HTW

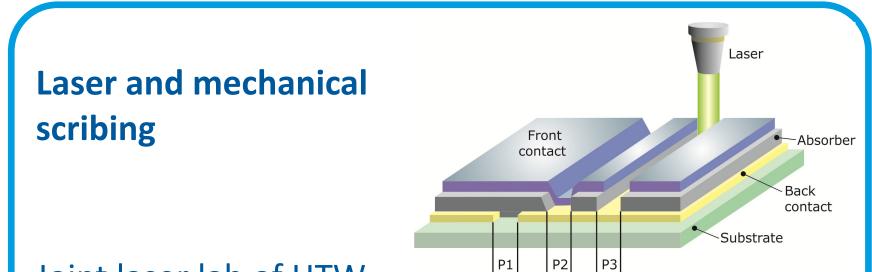
Deposition of (CuGa, In) precursor layers and metal back contact

A600V7

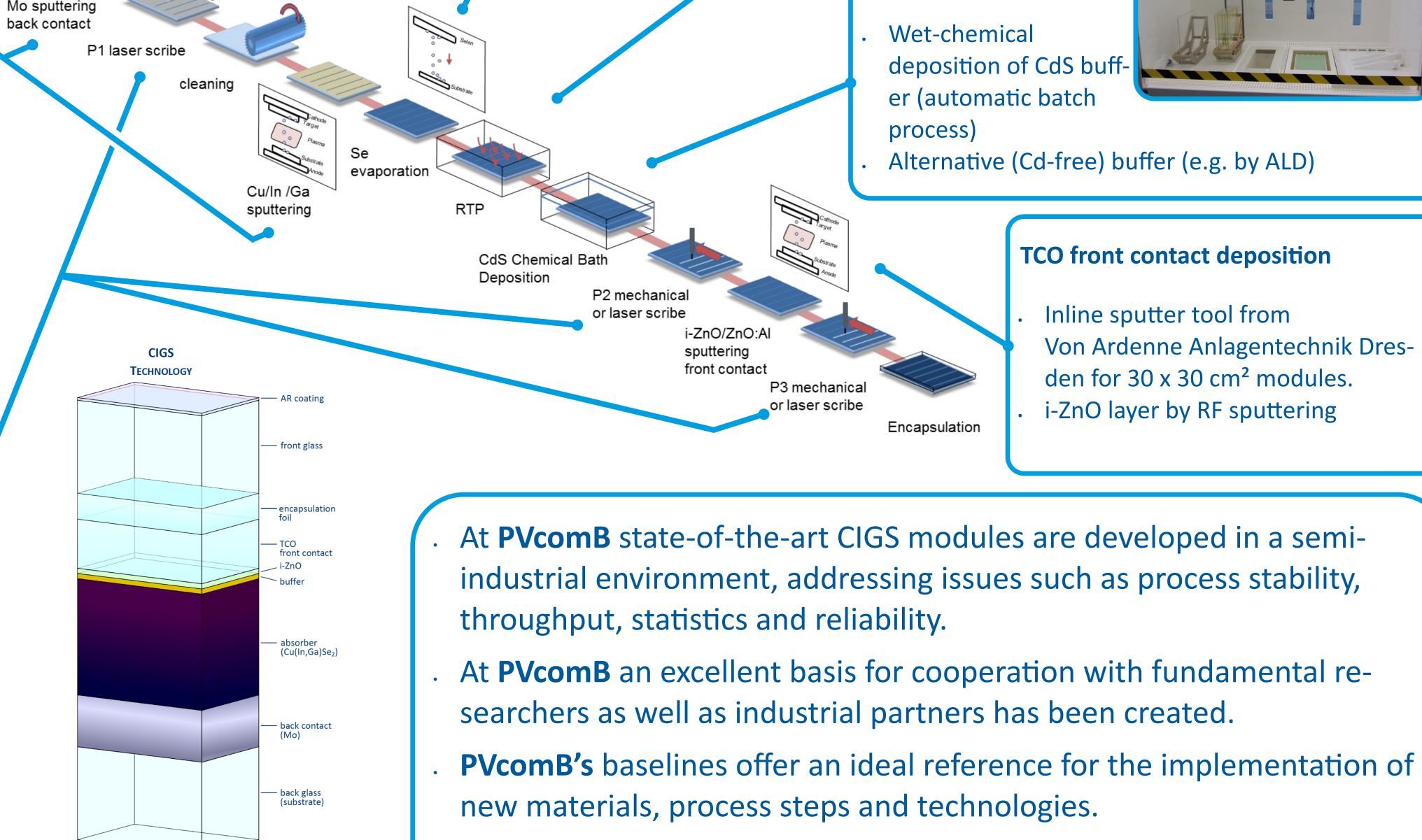
- Inline sputter tool from Leybold Optics Dresden for 30 x 30 cm² module size
- 4 planar (CuGa, In, Mo, Mo:Na) & 2 rotatable (Si) magnetron positions for precursors, contact and barrier layers
- Sixfold carrier magazine/2 substrates per carrier: high throughput & high reproducibility

Thermal evaporation of selenium pellets in vacuum
Up to 3 full size 30x30 cm² substrates

Selenization (RTP)


- Fast heating (4 K/s) Separate heating zones
- for T control
- Vacuum or inert gas atmosphere

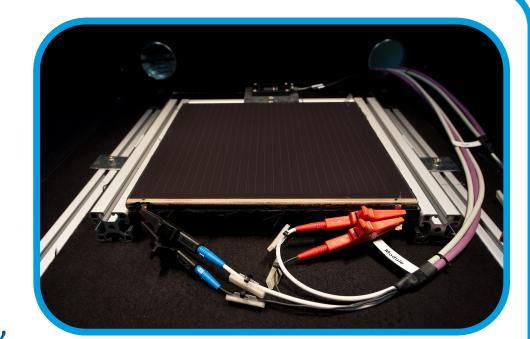
Chemical deposition and etching

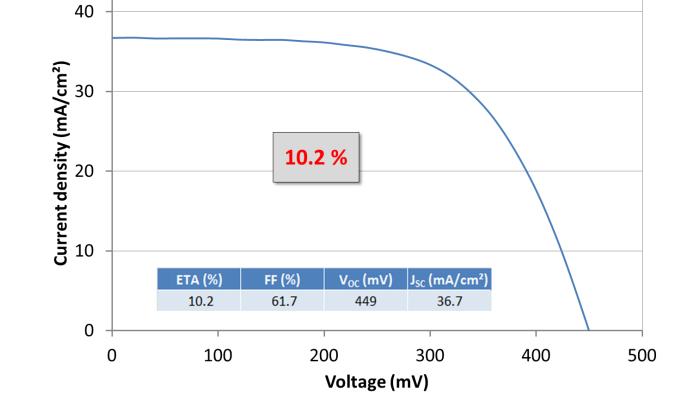

Joint laser lab of HTW

and PVcomB.

- High performance laser- and needle-scribing tool from Rofin Baasel Lasertech
- Laser sources with pulses at μs (1064 nm), ns (532 nm) and ps (1064, 532 & 355 nm) timescale.

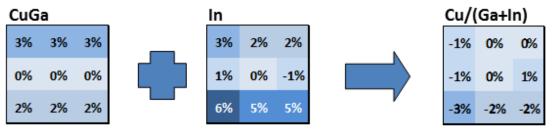
see also 3.CV.1.6/3.CV.1.34/3.CV.1.42


Hochschule für Technik und Wirtschaft Berlin



Advanced analytics for device and process optimization

Wide range of state-of-the-art analytics, e.g.


- . AAA dual-source WACOM solar simulator
- . AAA dual-source h.a.l.m. flasher
- Dual-source EQE with bias-light
- XRF, lock-in thermography (DLIT, ILIT), EL, UV-VIS, Raman, LBIC, ARS, Hall
- 1D/2D/3D device modelling e.g. Ga grading performance regimes

IV characteristics of the best CIGS solar cell (1.4 cm²) prepared on the recently completed CIGS baseline at PVcomB.

Film thickness and composition after RTP

	CIGSe	Cu/III	Ga/Cu+Ga	Ga/III	Se
	[µm]				[at%]
Inhomog	9,5%	5,1%	3,0%	5,3%	4,3%
Median	2,25	0,82	0,22	0,22	52,4
w/o corners					
Inhomog	3,7%	3,2%	1,1%	4,4%	2,2%
Median	2,26	0,82	0,22	0,22	52,48

Lateral homogeneity of thickness and composition of CIGS precursor and absorber layers (30 x 30 cm², measured by XRF).

www.pvcomb.com

